Chlorine has the smallest atomic radius since the atomic radius decreases as you travel to the right and up
Explanation:
Since, entropy is the measure of degree of randomness. So, more randomly the molecules of a substance are moving more will be its entropy.
- For example, when a solid melts then it means heat is absorbed by it due to which its molecules have gained energy. As a result, they collide with each other and hence, entropy will increase.
- Evaporation of a liquid will also cause the liquid to change its state from liquid to gas. This means molecules will go far away from each other leading to an increase in the entropy.
- Sublimation is a process of conversion of a solid into gaseous phase without going through liquid phase. So, in this case also entropy will increase due to gain in energy by the molecules of a solid.
- In freezing, molecules of a substance come closer to each other and acquire less energy. Hence, entropy decreases.
- Mixing is a process of combining two or more substances physically with each other. This leads to increase in entropy of a substance.
- In separation molecules are separated from each other leading to a decrease in energy. Hence, entropy will also decrease.
- Diffusion is a process in which molecules are able to rapidly move from one place to another. Hence, entropy increases when diffusion takes place.
Thus, we can conclude that melting of a solid, evaporation of a liquid, sublimation, mixing and diffusion involve an increase in the entropy of the system under consideration.
Answer:
vf = 3.27[m/s]
Explanation:
In order to solve this problem we must analyze each body individually and find the respective equations. The free body diagram of each body (box and bucket) should be made, in the attached image we can see the free body diagrams and the respective equations.
With the first free body diagram, we determine that the tension T should be equal to the product of the mass of the box by the acceleration of this.
With the second free body diagram we determine another equation that relates the tension to the acceleration of the bucket and the mass of the bucket.
Then we equalize the two stress equations and we can clear the acceleration.
a = 3.58 [m/s^2]
As we know that the bucket descends 1.5 [m], this same distance is traveled by the box, as they are connected by the same rope.
![x = \frac{1}{2} *a*t^{2}\\1.5 = \frac{1}{2}*(3.58) *t^{2} \\t = 0.91 [s]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Aa%2At%5E%7B2%7D%5C%5C1.5%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2A%283.58%29%20%2At%5E%7B2%7D%20%5C%5Ct%20%3D%200.91%20%5Bs%5D)
And the speed can be calculated as follows:
![v_{f}=v_{o}+a*t\\v_{f}=0+(3.58*0.915)\\v_{f}= 3.27[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D%2Ba%2At%5C%5Cv_%7Bf%7D%3D0%2B%283.58%2A0.915%29%5C%5Cv_%7Bf%7D%3D%203.27%5Bm%2Fs%5D)
<h2>The temperature of the air is 66.8° C</h2>
Explanation:
From the Newton's velocity of sound relationship , the velocity of sound is directly proportional to the square root of temperature .
In this case The velocity of sound = frequency x wavelength
= 798 x 0.48 = 383 m/sec
Suppose the temperature at this time = T K
Thus 383 ∝
I
The velocity of sound is 329 m/s at 273 K ( given )
Thus 329 ∝
II
Dividing I by II , we have
= 
or
= 1.25
and T = 339.8 K = 66.8° C