The conservation of momentum states that the total momentum in a system is constant if there is no external force acting on the system. The total momentum in the gun bullet system is 0 so it must stay that way.
The momentum of the bullet is mv = 0.015*500=7.5
The momentum of the gun must be the same to keep the total momentum of the system equal to zero, so we know that p = 7.5 for the gun.
Substituting this in we get:
7.5=3.1x
x=7.5/3.1
x=2.42
So the speed of the gun is 2.4m/s.
Given that the block have two applied masses 250 g at East and 100 g at South. In order to make a situation in which block moves towards point A, we have to apply minimum number of masses to the blocks. In order to prevent block moving toward East, we have to apply a mass at West, equal to the magnitude of mass at East but opposite in direction. Therefore, mass of 250 g at West is the required additional mass that has to be added. There is already 100 g of mass acting at South, that will attract block towards South or point A. No need to add further mass in North-South direction.
Answer:
The speed of the electron is
.
Explanation:
Given that,
The magnitude of electric field, 
The magnitude of magnetic field, B = 0.516 T
Both the magnetic and electric fields are acting on the moving electron. Then, the magnitude of electric field and magnetic field is balanced such that :

or

So, the speed of the electron is
. Hence, this is the required solution.
Explanation:
'What is the magnitude of the force needed to stop the horses and bring the box into equilibrium?' ≈42N; according to the vectors rules.
'Where would you locate the rope to apply the force?' - in point D.
PS. zoom out the attached picture.