Answer:
I believe the answer is esophagus
Answer:
Momentum of block B after collision =
Explanation:
Given
Before collision:
Momentum of block A =
= 
Momentum of block B =
= 
After collision:
Momentum of block A =
= 
Applying law of conservation of momentum to find momentum of block B after collision
.

Plugging in the given values and simplifying.


Adding 200 to both sides.


∴ 
Momentum of block B after collision =
Answer:
wave number = 0.3348 * 10⁻⁸ cm⁻¹
Explanation:
Given data:
K = 4.808 * 10^2 N/m
<u>Determine the wave number for the infrared absorption</u>
considering vibrational Spectre
k' = 2n / λ ---- ( 1 )
λ = c / v ----- ( 2 )
v = √k / u --- ( 3 )
where : k' = wave number, λ = wavelength, c = velocity of light, v = frequency, k = force constant, u = reduced mass
u = 1.90415 for D35Cl
Input equations 2 and 3 into equation 1 to get the final equation
K' = 2n/c * √k / u
= ( 2 * 3.14 ) / 2.98 * 10^8 ] * (√ 4.808 * 10^2 / 1.90415 )
= 33.486 * 10⁻⁸ m⁻¹ ≈ 0.3348 * 10⁻⁸ cm⁻¹
All living organisms need energy grow and reproduce maintain their structures, and respond to their enviorments: metabolism is the set of the processes that make energy available for cellular processes.