A=f/m
A=900/425
A=2.18
To determine acceleration you divide the force by the mass.
Answer:
Explanation:
a ) Slit separation d = .1 x 10⁻³ m
Screen distance D = 4 m
wave length of light λ = 650 x 10⁻⁹ m
Width of central fringe = λ D / d
= 
= 26 mm
b ) Distance between 1 st and 2 nd bright fringe will be equal to width of dark fringe which will also be equal to 26 mm
c ) Angular separation between the central maximum and 1 st order maximum will be equal to angular width of fringe which is equal to
λ / d
= 
= 6.5 x 10⁻³ radian.
Answer:
I'm not 100% sure, but I think the answer would be the first one because there's a force pushing the object in every direction, so they would cancel eachother out and make the object stay in the same place.
Explanation:
pls vote brainliest
Answer:
20.2 seconds
Explanation:
The airplane (and therefore the crate) initially has no vertical velocity, so v₀ = 0 m/s.
The crate is in free fall, so a = -9.8 m/s².
The crate falls downward, so Δx = -2000 m.
Find: t, the time it takes for the crate to land.
Δx = v₀ t + ½ at²
-2000 m = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 20.2 s
It takes 20.2 seconds for the crate to land.
Answer:
If you're taking the power of a number with an uncertainty, you multiply the relative uncertainty by the number in the power.
Explanation: