<span>Phospholipids would have to form a phospholipid bilayer in order to achieve water on the outside and water inside. This is because the nonpolar tails of the phospholipids are facing each other in a water environment because they cannot interact with the water, only their own tails, while the phosphate heads of the molecule face the periphery of the tails and interact with water. Micelles are the simplest examples of these.</span>
Answer is: mass of the ore is 8.54kg.<span>
</span>ω(Ca₃(PO₄)₂ - calcium phosphate) = 58.6% ÷ 100% = 0.586.
m(P) = 1.00 kg · 1000 g/kg.
m(P) = 1000 g.
In one molecule of calcium phosphate there are two phosphorus atoms:
M(Ca₃(PO₄)₂) = 310.18 g/mol.
M(P) = 30.97 g/mol.
For one kilogram of phosphorus, we need:
M(Ca₃(PO₄)₂) : 2M(P) = m(Ca₃(PO₄)₂) : m(P).
310.18 g/mol : 61.94 g/mol = m(Ca₃(PO₄)₂) : 1000 g.
m(Ca₃(PO₄)₂) = 5007.75 g ÷ 1000 g/kg = 5.007 kg.
Mass of ore find from proportion:
m(Ca₃(PO₄)₂) : m(ore) = 56% : 100%.
m(ore) = 100% · 5.007 kg ÷ 58.6%.
m(ore) = 8.54kg.
Answer:
Potassium cation = K⁺²
Explanation:
The metal cation in K₂SO₄ is K⁺². While the anion is SO₄²⁻.
All the metals have tendency to lose the electrons and form cation. In given compound the metal is potassium so it should form the cation. The overall compound is neutral.
The charge on sulfate is -2. While the oxidation state of potassium is +1. So in order to make compound overall neutral there should be two potassium cation so that potassium becomes +2 and cancel the -2 charge on sulfate and make the charge on compound zero.
2K⁺² , SO₄²⁻
K₂SO₄
Answer: it would release heat because the thermal energy it absorbed to become a gas. so it would release heat. hope this helps :)
Explanation:
Answer:
the second one looks like it so I picked the second one