The statement is true in this situation is C. The size of Ffric is the same as the size of Fapp:
From the diagram, since the body is in equilibrium, the sum of vertical forces equals zero. Also, the sum of horizontal forces equal zero.
So, ∑Fx = 0 and ∑Fy = 0
Since Fapp acts in the negative x - direction and Ffric acts in the positive x - direction,
∑Fx = -Fapp + Ffric = 0
-Fapp + Ffric = 0
Fapp = Ffric
Also, since Fgrav acts in the negative y - direction and Fnorm acts in the positive y - direction,
∑Fy = Fnorm + (-Fgrav) = 0
Fnorm - Fgrav = 0
Fnorm = Fgrav
So, we see that the size of Fapp <u>equals</u> size of Ffric and the size of Fnorm <u>equals</u> the size of Fgrav.
So, the correct option is C
The statement which is true in this situation is C. The size of Ffric is the same as the size of Fapp.
Learn more about equilibrium of forces here:
brainly.com/question/12980489
Answer:
Some animals hunt by <em>Camouflage</em> or sneaking up on their prey.
Molarity= mol/ liters
since the molarity is given, we can assume that we have 1.0 Liters of solution
15.6 M= mol/ 1 liters---> this means that we have 15.6 moles of HNO3
we need to convert these moles to grams using the molar mass of HNO3
molar mass HNO3= 1.01 + 14.0 + (3 X 16.0)= 63.01 g/mol
15.6 mol HNO3 (63.01 g/ mol)= 983 grams HNO3
now we have to determine the grams of solution using the assumption of 1 liters of solution and the density
1 liters= 1000 mL
1000 mL (1.41 g/ ml)= 1410 grams solution
mass percent= mass of solute/ mass of solution x 100
mass percent= 63.01/ 1410 x 100= 4.47 %
Explanation:
If the density of the object is more than that of water, it will sink. Otherwise it will float. The density of water is 1 g/mL.
Substance 1,
Mass, m = 450 g, Volume, V = 90 mL
Density = mass/volume
So,

It will sink.
Substance 2,
Mass, m = 35 g, Volume, V = 70 mL
Density = mass/volume
So,

It will float.
Substance 3,
Mass, m = 24 g, Volume, V = 12 mL
Density = mass/volume
So,

It will sink.
Can you post the question, on here? I cant open the document.