Answer:
Kinetic energy and potential energy.
The term 'mechanical energy' refers to the sum of the kinetic energy and the gravitational potential energy of an object,
<span>When an object moves in a circle, the acceleration points toward the center of the circle. This acceleration is called centripetal acceleration.
We can use a simple equation to find centripetal acceleration.
a = v^2 / r
We can use this same equation to find the speed of the car.
v^2 = a * r
v = sqrt { a * r }
v = sqrt{ (1.50)(9.80 m/s^2)(11.0 m) }
v = 12.7 m/s
The speed of the roller coaster is 12.7 m/s</span>
Answer:
Explanation:
1) Force Friction = Normal Force * Coefficient of Friction
Force Friction = Mass * Gravity * Coefficient of Friction
2) F = ma
Force = mass * acceleration
Force Friction (from #1) = mass * acceleration
acceleration = Force Friction / Mass
Answer:
The focal length of the concave mirror is -15.5 cm
Explanation:
Given that,
Height of the object, h = 20 cm
Radius of curvature of the mirror, R = -31 cm (direction is opposite)
Object distance, u = -94 cm
We need to find the focal length of the mirror. The relation between the focal length and the radius of curvature of the mirror is as follows :
R = 2f
f is the focal length


f = -15.5 cm
So, the focal length of the concave mirror is -15.5 cm. Hence, this is the required solution.
Power = (1000 kilo-Watt-hr/mo) x (1000/kilo) x (mo/30day) x (day/24 hr)
Power = (1000 x 1000 / 30 x 24) (kilo-watt-hr-mo-day/mo-kilo-day-hr)
Power = (1,000,000/720) watt
(voltage x current) = (1,000,000/720) watts
120v x current = (1,000,000/720) watts
Current = 1,000,000 / (720 x 120) Amperes
<em>Current = 11.57 Amperes</em>