Answer:

Explanation:
As we know that amplitude of forced oscillation is given as

here we know that natural frequency of the oscillation is given as

here mass of the object is given as



angular frequency of applied force is given as


now we have


Answer:3.51
Explanation:
Given
Coefficient of Friction 
Consider a small element at an angle \theta having an angle of 
Normal Force

Friction 

and 







Can you please stop pasting this question, just go to his profile and ask him.
Answer:
The kinetic energy of a body is the energy that it possessed due to its motion. Kinetic energy can be defined as the work needed to accelerate an object of a given mass from rest to its stated velocity. Kinetic energy depends upon the velocity and the mass of the body.
Answer:
<em>n =1.33 revolutions</em>
Explanation:
<u>Uniform Circular Motion</u>
The angular speed can be calculated in two different ways:

Where:
v = tangential speed
r = radius of the circle described by the rotating object
Also:

Where:
f = frequency
Solving for f:

Since the frequency is calculated when the number of revolutions n and the time t are known:

We can solve for n:
n=f.t
The particle moves in a circle of r=90 m with a speed v=25 m/s. Thus the angular speed is:


Now we calculate f:


Calculating the number of revolutions:
n = 0.04421*30
n =1.33 revolutions