The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
Answer:
Explanation:
It would actually be A. 30 , as each hour of ascension (i am not sure about the correct terminology) equals 15 .
The answers is
D. The acid creates cracks in the rocks, which
allow air to circulate through the rock,
causing it to weather
Answer:
0.8214 m/s^2
Explanation:
Fnet= Fpushed - Ffriction
Fpushed = 12.7N Ffriction = 8.33N
Fnet = 12.7N - 8.33N = 4.37N
Fnet= mass(acceleration)
Fnet = 4.37N mass = 5.32 kg
4.37N = 5.32 kg(acceleration)
acceleration= 0.8214 m/s^2
Answer:
allows for better thermal equilibrium
Explanation:
Due to the cone shape, most of the liquid will be closer to the bottom than the top. The large surface area of the bottom allows for faster heating.