A) cesium chloride
B) barium oxide
C) potassium sulfide
D) beryllium chloride
E) hydrogen bromide
F) aluminum fluoride
Ionic or electrovalent compounds support the theory of ionic bonding because they are compounds composed of charged particles formed when an atom gains or loses electrons.
Electrovalent compounds posses:
- High boiling and melting points.
- Form crystals.
<h3>What is ionic bonding?</h3>
This is the transfer of valence electrons from metals to non metals to form ionic compounds. It also refers to a chemical bond formed between two ions with opposite charges.
Learn more about ionic compounds:
brainly.com/question/18246121
Answer:
1.73 atm
Explanation:
Given data:
Initial volume of helium = 5.00 L
Final volume of helium = 12.0 L
Final pressure = 0.720 atm
Initial pressure = ?
Solution:
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
P₁ × 5.00 L = 0.720 atm × 12.0 L
P₁ = 8.64 atm. L/5 L
P₁ = 1.73 atm
Answer:
It is composed of protons, which have a positive charge, and neutrons, which have no charge. Protons, neutrons, and the electrons surrounding them are long-lived particles present in all ordinary, naturally occurring atoms. Other subatomic particles may be found in association with these three types of particles.
Explanation:
Atoms consist of three basic particles: protons, electrons, and neutrons. The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged).
Molar solubility is number of moles of the solute that can be dissolved per liter of solution before the solution becomes saturated.
The molar solubility of lead(ii) chloride with ksp value of 2.4 × 10e4 can be solve as:
Ksp = s2 = 2.4 × 10e4
s2 = 2.4 × 10e4
s = √(2.4 × 10e4)
s = 154.9 mol/L