Answer:
[H+] = 4.365x10⁻¹¹
Explanation:
The pH is a measurement widely used in chemistry. Is used in quality control to determine if a product is good for human or pet consumption. The equation to obtain the pH is:
pH = -log [H+]
To solve [H+]:
10^pH = -[H+]
10^-pH = -[H+]
In the problem:
10^-10.36 = -[H+]
<h3>[H+] = 4.365x10⁻¹¹</h3>
Answer:
The pressure will be 0.4 atm.
Explanation:
The gas laws are a set of chemical and physical laws that allow determining the behavior of gases in a closed system. The parameters evaluated in these laws are pressure, volume, temperature and moles.
As the volume increases, the gas particles (atoms or molecules) take longer to reach the walls of the container and therefore collide with them less times per unit of time. This means that the pressure will be lower because it represents the frequency of collisions of the gas against the walls. In this way pressure and volume are related, determining Boyle's law which says:
"The volume occupied by a certain gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
P*V= k
If you initially have the gas at a volume V1 and press P1, when the conditions change to a volume V2 and pressure P2, the following is satisfied:
P1*V1= P2*V2
In this case:
- P1= 1.2 atm
- V1= 4 L
- P2= ?
- V2= 12 L
Replacing:
1.2 atm* 4 L= P2* 12 L
Solving:

P2= 0.4 atm
<u><em>The pressure will be 0.4 atm.</em></u>
It’s Benzene, I do believe :) hope this helped, good luck!
Answer:
The area of the given rectangular index card = <u>9677.4 mm²</u>
Explanation:
Area is defined as the space occupied by a two dimensional shape or object. The SI unit of area is square metre (m²).
<u>The area of a rectangle</u> (A) = length (l) × width (w)
Given dimensions of the rectangle: Length (l) = 5.0 inch, Width (w) = 3.0 inch
Since, 1 inch = 25.4 millimetres (mm)
Therefore, l = 5 × 25.4 = 127 mm, and w = 3 × 25.4 = 76.2 mm
Therefore, <u>the area of the given rectangular index card</u> = A= l × w = 127 mm × 76.2 mm = <u>9677.4 mm²</u>
Maybe to not get rained on.
Hahhahahaha I ain't sure tho