Answer:
Explanation:
We define the linear density of charge as:

Where L is the rod's length, in this case the semicircle's length L = πr
The potential created at the center by an differential element of charge is:

where k is the coulomb's constant
r is the distance from dq to center of the circle
Thus.

Potential at the center of the semicircle
Answer:
The dog catches up with the man 6.1714m later.
Explanation:
The first thing to take into account is the speed formula. It is
, where v is speed, d is distance and t is time. From this formula, we can get the distance formula by finding d, it is 
Now, the distance equation for the man would be:

The distance equation for the dog would be obtained by the same way with just a little detail. The dog takes off running 1.8s after the man did. So, in the equation we must subtract 1.8 from t.

For a better understanding, at t=1.8 the dog must be in d=0. Let's verify:

Now, for finding how far they have each traveled when the dog catches up with the man we must match the equations of each one.






The result obtained previously means that the dog catches up with the man 3.8571s after the man started running.
That value is used in the man's distance equation.


Finally, the dog catches up with the man 6.1714m later.
Answer:
current in series is 2.50 mA
current in parallel is 13.51 mA
Explanation:
given data
voltage = 5 V
resistors R1 = 1.5 kilo ohms
resistors R2 = 0.5 kilo ohms
to given data
current flow
solution
current flow in series is express as here
current = voltage / resistor .................1
put here all value in equation 1
current = 5 / (1.5 + 0.5)
current = 5 / 2.0
so current = 2.50 mA
and
current flow in parallel is express as
current = voltage / resistor ....................2
put here all value in equation 2
current = 5 / (1/ (1/1.5 + 1/0.5))
current = 5 / 0.37
so current = 13.31 mA
Answer:
342 m/s
Explanation:
The velocity of sound in air is approximated as:
v ≈ 331.4 + 0.6 T
where v is the velocity in m/s and T is the temperature in Celsius.
At T = 18:
v ≈ 331.4 + 0.6 (18)
v ≈ 342.2
The velocity is approximately 342 m/s.
<em>There are some placeholders in the expression, but they can be safely assumed</em>
Answer:
(a) 
(b) 
(c) 
(d) 
Explanation:
<u>Sinusoidal Waves
</u>
An oscillating wave can be expressed as a sinusoidal function as follows

Where



The voltage of the question is the sinusoid expression

(a) By comparing with the general formula we have


(b) The period is the reciprocal of the frequency:


Converting to milliseconds

(c) The amplitude is

(d) Phase angle:
