A mirror is opaque you can not see through it but you can see a reflection within it
Answer:
Magnets come in a variety of shapes and one of the more common is the horseshoe (U) magnet. The horseshoe magnet has north and south poles just like a bar magnet but the magnet is curved so the poles lie in the same plane. The magnetic lines of force flow from pole to pole just like in the bar magnet.
Answer:
Farm = 98.1 [N]
Explanation:
To solve this problem we must draw the respective free body diagram, with the forces acting on the monkey. An analysis of the sums on the y-axis must be performed, in this axis the weight is acting down and the forces of both arms pulling up.
Weight is defined as the product of mass by gravitational acceleration.
W = m*g
where:
m = mass = 20 [kg]
g = gravity acceleration = 9.81 [m/s²]
W = 196.2 [N] (units of Newtons)
As this force points down, the force of both arms must go up, therefore each arm exerts a force of:
Farm = 196.2 / 2
Farm = 98.1 [N]
The electric potential energy of the pair of charges when the second charge is at point b is 7.3 x 10⁻⁸ J.
<h3>
Electric potential energy</h3>
When work is done on a positive test charge to move it from one location to another, potential energy increases and electric potential increases.
The electric potential energy between the charges when the second charge is at point b is calculated as follows;
ΔU = -w
Ui - Uf = w
Uf = Ui - w
where;
Uf is the final potential energy
Ui is the initial potential energy
w is the work done by the force
Uf = 5.4 x 10⁻⁸ J - (-1.9 x 10⁻⁸J)
Uf = 5.4 x 10⁻⁸ J + 1.9 x 10⁻⁸ J
Uf = 7.3 x 10⁻⁸ J
Thus, the electric potential energy of the pair of charges when the second charge is at point b is 7.3 x 10⁻⁸ J.
Learn more about electric potential energy here: brainly.com/question/14306881
#SPJ1
It is dependent upon the object's mass. The greater the mass of the object greater will be the inertia of the object, and hence it's resistance to change in motion as well.