1 * 3 + 2
-----------
3
Answer: 5/3.
Answer:
a)
X | 1 3 5 7
f(X) | 0.4 0.2 0.2 0.2
b) 
Step-by-step explanation:
For this case we have defined the cumulative distribution function like this:





And we know that the general definition for the distribution function is given by:

Where f represent the density function.
Part a
For this case we need to find the density function, so we can find the values for the density for each value of X = 1,2,3,4,5,6,7,... since X is a discrete random variable.







And for any value higher than 7 we have that:
![x_i \in [8,9,10,...]](https://tex.z-dn.net/?f=%20x_i%20%5Cin%20%5B8%2C9%2C10%2C...%5D)

So then we have our density function defined like this:
X | 1 3 5 7
f(X) | 0.4 0.2 0.2 0.2
Part b
For this case we want to find this probability 
And since the random variable is discrete we can write this like that:

Answer:
![[ln \frac{x(x^2 + 1)}{(x + 1)}]^\frac{3}{2}](https://tex.z-dn.net/?f=%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D)
Step-by-step explanation:
![\frac{3}{2} [ln x(x^2 + 1) - ln(x + 1)]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%20%5Bln%20x%28x%5E2%20%2B%201%29%20-%20ln%28x%20%2B%201%29%5D)
ln(m/n)= lnm - ln(n)
![\frac{3}{2}[ln x(x^2 + 1) - ln(x + 1)]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%5Bln%20x%28x%5E2%20%2B%201%29%20-%20ln%28x%20%2B%201%29%5D)
![\frac{3}{2}[ln \frac{x(x^2 + 1)}{(x + 1)}]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D)
3/2 is before ln. so we move the fraction 3/2 to the exponent
as per log property we move the fraction to the exponent
![[ln \frac{x(x^2 + 1)}{(x + 1)}]^\frac{3}{2}](https://tex.z-dn.net/?f=%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D)
Answer:
a) -4^8
Step-by-step explanation:
Answer: -24x - 48
Step-by-step explanation: