1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
3 years ago
8

A sound from a source has an intensity of 270 dB when it is 1 m from the source.

Physics
1 answer:
Rufina [12.5K]3 years ago
8 0
Remember that sound intensity decreases in inverse proportion to the distance squared. So, to solve this we are going to use the inverse square formula: \frac{I_{2} }{I_{1}}= (\frac{d{2} }{d_{1}})^2
where
I_{2} is the intensity at distance 2
I_{1} is the intensity at distance 1
d_{2} is distance 2
d_{1} is distance 1

We can infer for our problem that I_{1}=270, d_{1}=1, and d_{2}=3. Lets replace those values in our formula to find I_{2}:
\frac{I_{2} }{I_{1}}= (\frac{d{2} }{d_{1}})^2
\frac{I_{2} }{270} =( \frac{1}{3} )^2
\frac{I_{2} }{270} = \frac{1}{9}
I_{2}= \frac{270}{9}
I_{2}=30 dB

We can conclude that the intensity of the sound when is <span>3 m from the source is 30 dB.</span>
You might be interested in
On a winter day with a temperature of -10°C, 500g of snow (water ice) is brought inside where the temperature is 18 °C. The snow
Serjik [45]

Answer:

Explanation:

Mass of ice m = 500g = .5 kg

Heat required to raise the temperature of ice by 10 degree

= mass of ice x specific heat of ice x change in temperature

= .5 x 2093 x 10 J

10465 J

Heat required to melt the ice

= mass of ice x latent heat

0.5 x 334 x 10³ J

167000 J

Heat required to raise its temperature to 18 degree

= mass x specific heat of water x rise in temperature

= .5 x 4182 x 18

=37638 J

Total heat

=10465 +167000+ 37638

=215103 J

7 0
3 years ago
A jet accelerates from rest down a runway at 1.75m/s² for a distance of 1500 m before takeoff.
babunello [35]
A. Using the third equation of motion:
v2 = u2 + 2as
from the question;
the jet was initially at rest
hence u = 0
a = 1.75m/s2
s = 1500m
v2 = 02 + 2(1.75)(1500)
v2 = 5250
v = √5250
v = 72.46m/s
hence it moves with a velocity of 72.46m/s.
b. s = ut + 1/2at2
1500 = 0(t) + 1/2(1.75)t2
1500 × 2 = 2× 1/2(1.75)t2
3000 = 1.75t2
1714.29 = t2
41.4 = t
hence the time taken for the plane to down the runway is 41.4s.


Read more on Brainly.com - brainly.com/question/18743384#readmore
8 0
3 years ago
You are removing branches from your roof after a big storm. You throw a branch horizontally from your roof, which is a height 3.
mart [117]

Answer:

The initial velocity in the x-direction with which the branch was thrown is approximately 10.224 m/s

Explanation:

The given parameters of the motion of the branch are;

The height from which the branch is thrown = 3.00 m

The horizontal distance the branch lands from where it was thrown, x = 8.00 m

The direction in which the branch is thrown = Horizontally

Therefore, the initial vertical velocity of the branch, u_y = 0 m/s

The time it takes an object in free fall (zero initial downward vertical velocity) to reach the ground is given as follows;

s = u_y·t + 1/2·g·t²

Where;

u_y = 0 m/s

s = The initial height of the object = 3.00 m

g = The acceleration due to gravity = 9.8 m/s²

∴ s = 0·t + 1/2·g·t² = 0 × t + 1/2·g·t² = 1/2·g·t²

t = √(2·s/g) = √(2 × 3/9.8) = (√30)/7 ≈ 0.78246

The horizontal distance covered before the branch touches the ground, x = 8.00 m

Therefore, the initial velocity in the horizontal, x-direction with which the branch was thrown, 'uₓ', is given as follows;

uₓ = x/t = 8.00 m/((√30)/7 s)

Using a graphing calculator, we get;

uₓ = 8.00 m/((√30)/7 s) = (28/15)·√30 m/s ≈ 10.224 m/s

The initial velocity in the horizontal, x-direction with which the branch was thrown, uₓ ≈ 10.224 m/s.

3 0
3 years ago
explain how many minimum number of geostationary satellites are required for global coverage of T.V transmission
kobusy [5.1K]

Answer:I honestly don't know

Explanation:

4 0
3 years ago
Part complete Sound with frequency 1240 Hz leaves a room through a doorway with a width of 1.11 m . At what minimum angle relati
Sedbober [7]

Answer:

14.43° or 0.25184 rad

Explanation:

v = Speed of sound in air = 343 m/s

f = Frequency = 1240 Hz

d = Width in doorway = 1.11 m

Wavelength is given by

\lambda=\frac{v}{f}\\\Rightarrow \lambda=\frac{343}{1240}\\\Rightarrow \lambda=0.2766\ m

In the case of Fraunhofer diffraction we have the relation

dsin\theta=\lambda\\\Rightarrow \theta=sin^{-1}\frac{\lambda}{d}\\\Rightarrow \theta=sin^{-1}\frac{0.2766}{1.11}\\\Rightarrow \theta=14.43^{\circ}\ or\ 0.25184\ rad

The minimum angle relative to the center line perpendicular to the doorway will someone outside the room hear no sound is 14.43° or 0.25184 rad

6 0
3 years ago
Other questions:
  • What is process that involves the collection of information and ideas supported by belief or opinion for science?
    6·1 answer
  • Why must one use a reference point to determine whether or not an object is in motion
    14·1 answer
  • Why is evaporation of water greater in summer?
    15·2 answers
  • Light bulb 1 operates with a filament temperature of 2800 K, whereas light bulb 2 has a filament temperature of 1700 K. Both fil
    12·1 answer
  • On the modern periodic table, elements are ordered according to what?
    12·1 answer
  • Help me plzzzzzz! Can someone help me with number 4 Idon’t get it
    7·2 answers
  • What type of modulation is typically used by broadcasting stations to transmit pictures on television screens?
    9·2 answers
  • What is resistance to motion called?​
    14·1 answer
  • DESPERATE!! WILL GIVE BARINLIST AND THANKS
    9·2 answers
  • Why are Big cinema hall are carpeted and their walls are made of some rough materials​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!