<span>Actually in this case heat energy is being transferred. Heat
energy or thermal energy is transferred from the burning of wood to the
sausages for it to be cooked. The sausage is being heated by the fire and is
absorbing the heat or thermal energy.</span>
<span>12-50t=70t, t= 0.1h = 6 minutes.</span>
Answer:
The magnitude of the magnetic field halfway between the wires is 3.0 x 10⁻⁵ T.
Explanation:
Given;
distance half way between the parallel wires, r = ¹/₂ (40 cm) = 20 cm = 0.2 m
current carried in opposite direction, I₁ and I₂ = 10 A and 20 A respectively
The magnitude of the magnetic field halfway between the wires can be calculated as;

where;
B is magnitude of the magnetic field halfway between the wires
I₁ is current in the first wire
I₂ is current the second wire
μ₀ is permeability of free space
r is distance half way between the wires

Therefore, the magnitude of the magnetic field halfway between the wires is 3.0 x 10⁻⁵ T.
My guess for this one would be; 400 N
My reasoning would be; it starts at 0 on both X and Y, if you need to get to 1.00 meters thats 4/4. 1/4 of 1.00 is .25, and on .25 its on 100 so multiply it by 4 to make 1.00 and you get 400 N
Mechanical Wave cannot travel in space vaccumes, which would be considered "Empty Space" in your situation.