Hello!
Answer:
Gravity
Explanation:
It can settle down and separate over time due to gravity.
Hope this helps! Have a great day!
Answer:
Na has the most similar configuration.
Explanation:
Na electron configuration: 1s²2s²2p⁶3s¹ or [Ne] 3s₁
Mg electron configuration: 1s²2s²2p⁶3s² or [Ne] 3s²
Be electron configuration: 1s²2s² or [He] 2s²
This is because Na and Mg are right next to each other in the same period (horizontal).
False. They don't borrow electrons at all. They already have their respective electron affinities. This is called as electronegativity, and it's an occurence where it already has its own from its actual structure. It never borrows any electrons at all.
If water is deionized and it is consumed, it may cause people to urinate more and eliminate more electrolytes from the body.
Mass of BaO in initial mixture = 3.50g
Explanation:
Let mass of BaO in mixture be x g
mass of MgO in mixture be (6.35 - x) g
Initially CO_2
Volume = 3.50 L
Temp = 303 K
Pressure = 750 torr = 750 / 760 atm
Applying ideal gas equation
PV = nRT
n = PV / RT
(n)_CO_2 = ((750/760)* 3.50) / 0.0821 * 303
(n)_CO_2 = 0.139 mole
Finally; mole of CO_2
n= PV /RT
((245/760) *3.5) / 303* 0.0821
(n)_CO_2 = 0.045 mole
Mole of CO_2 reacted = 0.139 - 0.045
=0.044 mole
BaO + CO_2 BaCO_3
Mgo + CO_2 MgCO_3
moles of CO_2 reacted = ( moles of BaO + moles of MgO)
moles of BaO in mixture = x / 153 mole
moles of MgO in mixture = 6.35 - x mole / 40
Equating,
x/ 153 +6.35/40 = 0.094
= x/153 + 6.35 / 40 - x/40 =0.094
= x (1/40 - 1153) = (6.35/40 - 0.094)
= x * 10.018464
= 0.06475
mass of BaO in mixture = 3.50g