Answer:
The pair of arrows which represents the relationship of speeds of the two cars is;
The second option as shown in the attached drawing
Explanation:
The given parameters are;
The reading on the speedometer of one car = 20 m/s
The reading on the speedometer of the other car = 72 km/h = 20 m/s
The blue arrow = 20 m/s
Therefore, given that the speeds of both cars are equal (20 m/s = 72 km/h = 20 m/s), the pair of arrows that represent the relationship of speeds of the two cars is two equal length blue arrows which is the second option
The attached diagram showing the pair of arrows that represents the relationship of speeds of the two cars is drawn using Microsoft Visio.
The answer is d Thus, the first energy level holds 2 * 1^2 = 2 electrons, while the second holds 2 * 2^2 = 8 electrons. Each orbital. The third energy level can hold up to 18 electrons, meaning that it is not full when it has only electrons.
M1 = 17.45 M
M2 = 0.83 M
V2 = 250 ml
M1. V1= M2. V2
V1 = (M2. V2)/M1 = (0.83× 250)/ 17.45= 11.89 ml
<span>Mass of the solution = 0.17m
Kb for C6H5NH2 = 3.8 x 10^-10
We know Ka for C6H5NH2 = 1.78x10^-11
We have Kw = Ka x Kb => Ka = Kw / Kb
=> (C2H5NH2)(H3O^+)/(C2H5NH3^+) => 1.78x10^-11 = K^2 / 0.17
K^2 = 3 x 10^-12 => K = 1.73 x 10^-6.
pH = -log(Kw(H3O^+)) = -log(1.73 x 10^-6) = 5.76</span>
So we look equation for the free Gibbs free energy (ΔG) which depends on entalpy (ΔH), temperature (T) and entropy (ΔS):
ΔG = ΔH - TΔS
ΔG is negative (-) because the water absorption on the silica gel surface is a spontaneous process.
ΔH is negative (-) because the water absorption on the silica gel surface is a exothermic process (it releases heat and if you want to desorb the water form the silica gen you need to add heat which is a endothermic process).
ΔS is negative (-) because the water is adsorbed, so from disorderly state you take the water molecules and put them in a orderly state and by doing that you decrease the entropy.