Answer:
doubled
Explanation:
F=ma1----------(1)
2F = ma2-------(2)
Divide 2nd equation by 1st one
we get a1×2=a2
The vertical weight carried by the builder at the rear end is F = 308.1 N
<h3>Calculations and Parameters</h3>
Given that:
The weight is carried up along the plane in rotational equilibrium condition
The torque equilibrium condition can be used to solve
We can note that the torque due to the force of the rear person about the position of the front person = Torque due to the weight of the block about the position of the front person
This would lead to:
F(W*cosθ) = mgsinθ(L/2) + mgcosθ(W/2)
F(1cos20)= 197/2(3.10sin20 + 2 cos 20)
Fcos20= 289.55
F= 308.1N
Read more about vertical weight here:
brainly.com/question/15244771
#SPJ1
Answer:
The Full Moon and New Moon
Explanation:
Answer:
4.41 m/s^2
Explanation:
(v_f)^2 - (v_i)^2 = 2a * change in distance
(21)^2 - (0)^2 = 2a * 50
a = (21^2)/(2*50)
a = 4.41 m/s^2
Answer:
more massive objects fall faster than less massive objects because they are acted upon by a larger force of gravity
Explanation: