There are 2.32 x 10^6 kg sulfuric acid in the rainfall.
Solution:
We can find the volume of the solution by the product of 1.00 in and 1800 miles2:
1800 miles2 * 2.59e+6 sq m / 1 sq mi = 4.662 x 10^9 sq m
1.00 in * 1 m / 39.3701 in = 0.0254 m
Volume = 4.662 x 10^9 m^2 * 0.0254 m
= 1.184 x 10^8 m^3 * 1000 L / 1 m3
= 1.184 x 10^11 Liters
We get the molarity of H2SO4 from the concentration of [H+] given by pH = 3.70:
[H+] = 10^-pH = 10^-3.7 = 0.000200 M
[H2SO4] = 0.000100 M
By multiplying the molarity of sulfuric acid by the volume of the solution, we can get the number of moles of sulfuric acid:
1.184 x 10^11 L * 0.000100 mol/L H2SO4 = 2.36 x 10^7 moles H2SO4
We can now calculate for the mass of sulfuric acid in the rainfall:
mass of H2SO4 = 2.36 x 10^7 moles * 98.079 g/mol
= 2.32 x 10^9 g * 1 kg / 1000 g
= 2.32 x 10^6 kg H2SO4
Your answer would be 0.024951344877489 but rounding it would be 0.025 moles
Can you show me the atoms please? I would be able to help.
Answer:
A device designed to transmit electromagnetic waves through the air should be developed.
Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.