Answer:
correct answer is iron
Explanation:
solution
as Iron is only formed in the cores of the star that is more massive than the sun because it takes very much energy as gravitational force push inward on the star
and the sun can form the helium and carbon and the oxygen and also other elements
but not the iron or any iron group element
so correct answer is iron
Answer:
i think its 4 or 35
Explanation:
its in the middle of 40 and 30
Answer: y(t)= 1/π^2 sin(6*π^2*t)
Explanation: In order to solve this problem we have to consider the general expression for a harmonic movement given by:
y(t)= A*sin (ω*t +φo) where ω is the angular frequency. A is the amplitude.
The data are: ν= 3π; y(t=0)=0 and y'(0)=6.
Firstly we know that 2πν=ω then ω=6*π^2
Then, we have y(0)=0=A*sin (6*π^2*0+φo)= A sin (φo)=0 then φo=0
Besides y'(t)=6*π^2*A*cos (6*π^2*t)
y'(0)=6=6*π^2*A*cos (6*π^2*0)
6=6*π^2*A then A= 1/π^2
Finally the equation is:
y(t)= 1/π^2 sin(6*π^2*t)
High-density altitude and high humidity do not ever go hand in hand. If high humidity does exist, however, it exists wise to add 10 percent to your calculated takeoff distance and expect a reduced climb rate.
With a longer takeoff distance, the air exists less dense.
<h3>How do atmospheric temp pressure and rel humidity affects aircraft performance?</h3>
Several elements (altitude/pressure, temperature, and humidity) affect air density. A more elevated altitude, low-pressure area, higher temperature, and increased humidity all contain one effect: they lower the density of the air. And as a consequence of that: a decrease in aircraft and engine performance.
Humidity reduces the implementation of most aircraft, not only because of its effect on the wings but also effect on the engines. Humidity contains a significant effect on the path of plane flies. This exists due to the weight of the air when it exists in humid.
To learn more about humidity refer to:
brainly.com/question/21494654
#SPJ4