Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A:

A skateboarder flies horizontally off a cement planter. After a time of 3 seconds (Δt), he lands with a final velocity (v) of −4.5 m/s. Assuming the acceleration is -9.8 m/s² (a), we can calculate the initial velocity of the skateboarder (v₀) using the kinematic equation A.

Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A:

Learn more: brainly.com/question/4434106
Answer:
because each row increases in atomic mass by a specific number, so anything over five is in the second row.
The answer is A. Friction.
Friction is the resisting force between two objects that move against one another.
Hope this helps! :)
Based on Hooke's law, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
<h3>What is the spring constant?</h3>
The spring constant or stiffness constant of an elastic spring is constant which describes the extent a bit forceapplied to an elastic spring will extend it.
- Spring constant, K = force/extension
Assuming, a body's muscle mechanism is a spring obeying Hooke's law, the effective mass of the spring with mass m is 1/3 of the mass of the spring = m/3
The potential energy that can be stored = ke^2 / 2
where K is spring constant and e is the extension produced.
Therefore, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
Learn more about Hooke's law at: brainly.com/question/12253978