1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OverLord2011 [107]
3 years ago
10

A 2-cm-diameter vertical water jet is injected upward by a nozzle at a speed of 15 m/s. Determine the maximum weight of a flat p

late that can be supported by this water jet at a height of 2 m from the nozzle. Take the density of water to be 1000 kg/m3 The maximum weight of a flat plate that can be supported by the water jet is____ N.
Engineering
1 answer:
Ede4ka [16]3 years ago
7 0

Answer:58.28 N

Explanation:

Given data

dia. of nozzle \left ( d\right )=2 cm

initial velocity\left ( u\right )=15 m/s

height\left ( h\right )=2m

Now velocity of jet at height of 2m

v^2-u^2=2gh

v^2=15^2-2\left ( 9.81\right )\left ( 2\right )

v=\sqrt{185.76}=13.62 m/s

Now\ forces\ on\ plate\ are\ weight\left ( Downward\right ) and jet\ force\left ( upward\right )

equating them

W=\left ( \rho Av\right )v

W=10^{3}\times \frac{\pi}{4}\left ( 0.02\right )^2\times 13.62^2

W=58.28 N

You might be interested in
The volume at a section of a 2-lane highway is 1800 vph in each direction and the density is approximately 30 bpm. A slow moving
katrin [286]

Answer:

Idk

Explanation:

8 0
3 years ago
2. The following segment of carotid artery has an inlet velocity of 50 cm/s (diameter of 15 mm). The outlet has a diameter of 11
ahrayia [7]

This question is incomplete, the missing diagram is uploaded along this answer below.

Answer:

the forces required to keep the artery in place is 1.65 N

Explanation:

Given the data in the question;

Inlet velocity V₁ = 50 cm/s = 0.5 m/s

diameter d₁ = 15 mm = 0.015 m

radius r₁ = 0.0075 m

diameter d₂ = 11 mm = 0.011 m

radius r₂ = 0.0055 m

A₁ = πr² = 3.14( 0.0075 )² =  1.76625 × 10⁻⁴ m²

A₂ = πr² = 3.14( 0.0055 )² =  9.4985 × 10⁻⁵ m²

pressure at inlet P₁ = 110 mm of Hg = 14665.5 pascal

pressure at outlet P₂ = 95 mm of Hg = 12665.6 pascal

Inlet volumetric flowrate = A₁V₁ = 1.76625 × 10⁻⁴ × 0.5 = 8.83125 × 10⁻⁵ m³/s

given that; blood density is 1050 kg/m³

mass going in m' = 8.83125 × 10⁻⁵ m³/s × 1050 kg/m³ = 0.092728 kg/s

Now, using continuity equation

A₁V₁ = A₂V₂

V₂ = A₁V₁ / A₂ = (d₁/d₂)² × V₁

we substitute

V₂ =  (0.015 / 0.011 )² × 0.5

V₂ = 0.92975 m/s

from the diagram, force balance in x-direction;

0 - P₂A₂ × cos(60°) + Rₓ = m'( V₂cos(60°) - 0 )    

so we substitute in our values

0 - (12665.6 × 9.4985 × 10⁻⁵)  × cos(60°) + Rₓ = 0.092728( 0.92975 cos(60°) - 0 )    

0 - 0.6014925 + Rₓ =  0.043106929 - 0

Rₓ = 0.043106929 + 0.6014925

Rₓ = 0.6446 N

Also, we do the same force balance in y-direction;

P₁A₁ - P₂A₂ × sin(60°) + R_y = m'( V₂sin(60°) - 0.5 )  

we substitute

⇒ (14665.5 × 1.76625 × 10⁻⁴) - (12665.6 × 9.4985 × 10⁻⁵) × sin(60°) + R_y = 0.092728( 0.92975sin(60°) - 0.5 )

⇒ 1.5484 + R_y = 0.092728( 0.305187 )

⇒ 1.5484 + R_y = 0.028299    

R_y = 0.028299 - 1.5484

R_y = -1.52 N

Hence reaction force required will be;

R = √( Rₓ² + R_y² )

we substitute

R = √( (0.6446)² + (-1.52)² )

R = √( 0.41550916 + 2.3104 )

R = √( 2.72590916 )

R = 1.65 N

Therefore, the forces required to keep the artery in place is 1.65 N

 

7 0
2 years ago
Assume the impedance of a circuit element is Z = (3 + j4) Ω. Determine the circuit element’s conductance and susceptance.
djyliett [7]

Answer:

B. G = 333 mS, B = j250 mS

Explanation:

impedance of a circuit element is Z = (3 + j4) Ω

The general equation for impedance

Z = (R + jX) Ω

where

R = resistance in ohm

X = reactance

R = 3Ω  X = 4Ω

Conductance = 1/R while Susceptance = 1/X

Conductance = 1/3 = 0.333S

= 333 mS

Susceptance = 1/4 = 0.25S

= 250mS

The right option is B. G = 333 mS, B = j250 mS

8 0
3 years ago
Airbags will deploy in a head on collision but not in a collision that occurs from angle
Aneli [31]

Answer:  

Airbags will deploy in almost any angle.

Explanation:

Cars have sensors around them, so when the car gets hit, the sensors detect a crash and deploy the airbags to keep you safe.

8 0
3 years ago
X cotx expansion using maclaurins theorem.
Lemur [1.5K]

It is to be noted that it is impossible to find the Maclaurin Expansion for F(x) = cotx.

<h3>What is Maclaurin Expansion?</h3>

The Maclaurin Expansion is a Taylor series that has been expanded around the reference point zero and has the formula f(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!

<h3>What is the explanation for the above?</h3>

as indicated above, the Maclaurin infinite series expansion is given as:

F(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!

If F(0) = Cot 0

F(0) = ∝ = 1/0

This is not definitive,

Hence, it is impossible to find the Maclaurin infinite series expansion for F(x) = cotx.

Learn more about Maclaurin Expansion at;
brainly.com/question/7846182
#SPJ1

4 0
1 year ago
Other questions:
  • Represent the following sentence by a Boolean expression:
    11·1 answer
  • 3) What kind of bridges direct their load along it's curve and into the
    12·1 answer
  • A closed, rigid tank fitted with a paddle wheel contains 2.0 kg of air, initially at 200oC, 1 bar. During an interval of 10 minu
    8·1 answer
  • Ten dollars per hour is about how much income per year
    5·2 answers
  • If 3 varies inversely as x and y=2 when x=25, find x when y=40
    7·1 answer
  • Which is an alloy made up of iron and carbon and has high compressive and tensile strength?
    6·1 answer
  • A steady state filtration process is used to separate silicon dioxide (sand) from water. The stream to be treated has a flow rat
    5·1 answer
  • An ideal gas is contained in a closed assembly with an initial pressure and temperature of
    14·1 answer
  • 9
    15·1 answer
  • What the minimum wire size for a general residential application on a 20 A circuit
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!