Answer:
q=39.15 W/m²
Explanation:
We know that
Thermal resistance due to conductivity given as
R=L/KA
Thermal resistance due to heat transfer coefficient given as
R=1/hA
Total thermal resistance
Now by putting the values
We know that
Q=ΔT/R
So heat transfer per unit volume is 39.15 W/m²
q=39.15 W/m²
Answer:
12.332 KW
The positive sign indicates work done by the system ( Turbine )
Explanation:
Stagnation pressure( P1 ) = 900 kPa
Stagnation temperature ( T1 ) = 658K
Expanded stagnation pressure ( P2 ) = 100 kPa
Expansion process is Isentropic, also assume steady state condition
mass flow rate ( m ) = 0.04 kg/s
<u>Calculate the Turbine power </u>
Assuming a steady state condition
( p1 / p2 )^(r-1/r) = ( T1 / T2 )
= (900 / 100)^(1.4-1/1.4) = ( 658 / T2 )
= ( 9 )^0.285 = 658 / T2
∴ T2 = 351.22 K
Finally Turbine Power / power developed can be calculated as
Wt = mCp ( T1 - T2 )
= 0.04 * 1.005 ( 658 - 351.22 )
= 12.332 KW
The positive sign indicates work done by the system ( Turbine )
Explanation:
Outer di ameter
Given loading on the cylinder Helix an gle of the weld form
(i) Normal stress on the plane at angle is
(ii) Shear stress along an angle of is
Answer:
MRR = 1.984
Explanation:
Given that
Depth of cut ,d=0.105 in
Diameter D= 1 in
Speed V= 105 sfpm
feed f= 0.015 ipr
Now the metal removal rate given as
MRR= 12 f V d
d= depth of cut
V= Speed
f=Feed
MRR= Metal removal rate
By putting the values
MRR= 12 f V d
MRR = 12 x 0.015 x 105 x 0.105
MRR = 1.984
Therefore answer is -
1.944