Answer: when concentrations of acid and base are same, pH = pKa
PH = 12.38 pOH = 1.62
Explanation: pKa= -log(Ka)= 12.38. PH + pOH = 14.00
nuclear power--used to turn turbines...
fossil fuels--burned to provide energy that is....
renewable energy--energy that with come back after use
outlet--a device....
steam--nuclear reactors....
I'm not sure but I tried lol,lemme know if I'm wrong :D
Answer:
a. 2,9x10⁻⁴ M HCl
Explanation:
A solution is considered acidic when its concentration of H⁺ is higher than 1x10⁻⁷. The higher concentration of H⁺ will be the most acidic solution.
a. 2,9x10⁻⁴ M HCl. In water, this solution dissolves as H⁺ and Cl⁻. That means concentration of H⁺ is 2,9x10⁻⁴ M.
b. 4,5x10⁻⁵M HNO₃. In the same way, concentration of H⁺ is 4,5x10⁻⁵M.
c. 1,0x10⁻⁷M NaCl. As this solution doesn't produce H⁺, the solution is not acidic
d. 1,5x10⁻²M KOH. This solution produce OH⁻. That means the solution is basic nor acidic.
Thus, the solution considered the most acidic is a. 2,9x10⁻⁴ M HCl, because has the higher concentration of H⁺.
I hope it helps!
Answer: Heat of vaporization is 41094 Joules
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at 429 K = 760 torr
= final pressure at 415 K = 515 torr
= enthalpy of vaporisation = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 429 K
= final temperature = 515 K
Now put all the given values in this formula, we get
![\log (\frac{515}{760}=\frac{\Delta H}{2.303\times 8.314J/mole.K}[\frac{1}{429K}-\frac{1}{415K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B515%7D%7B760%7D%3D%5Cfrac%7B%5CDelta%20H%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B429K%7D-%5Cfrac%7B1%7D%7B415K%7D%5D)

Thus the heat of vaporization is 41094 Joules