We are given with the expression d = ut + 0.5 at^2 and is asked to express the equation in terms of a. First, we transpose ut to the left side, then we multiply to the equation and divide lastly the resulting equation by t^2. The final expression becomes a = 2(d-ut)/t^2.
Answer:
we got time and velocity over time.
so the distance is again the area underneath the graph
for a triangle with known base and height it's
4*10 / 2
distance traveled is 20
deceleration occurs when velocity decreases. that happens from t=2 till t=4
in 2 time-units we loose 10 units of velocity, so we decelerate by 5 units per 1 time
a (from t=2 to t=4) = -5v/t
Answer:
C
Explanation:
Angular momentum is the product of moment of inertia and angular velocity.
L = I × ω
Since the planet follows a stable circular orbit, I and ω are constant and non-zero. Therefore, the angular momentum is constant and non-zero.
Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.