Answer:
The correct answer is <em>C) Two atoms of silver are needed to complete the reaction.</em>
Explanation:
The Law of Conservation of Matter postulates that "the mass is not created or destroyed, only transformed." This means that the reagents interact with each other and form new products with physical and chemical properties different from those of the reagents because the atoms of the substances are ordered differently. But the amount of matter or mass before and after a transformation (chemical reaction) is always the same, that is, the quantities of the masses involved in a given reaction must be constant at all times, not changing in their proportions when the reaction ends.
Then, taking into account the Law of Conservation of Matter, as an atom cannot be created or destroyed in a chemical reaction, the number of atoms that are present in the reagents has to be equal to the number of atoms present in the products.
For this, the chemical equation must be balanced. For that, you must first look at the subscripts next to each atom to find the number of atoms in each compound in the equation. If the same atom appears in more than one molecule, you must add its quantities. On the other hand, the coefficients located in front of each molecule indicate the amount of each molecule for the reaction. This coefficient can be modified to balance the equation, just as you should never alter the subscripts. By multiplying the coefficient mentioned by the subscript, you get the amount of each element present in the reaction.
In this case:
Left side: 2 silver (Ag), 2 hydrogen (H) and 1 sulfur (S)
Right side: 2 silver (Ag), 2 hydrogen (H) and 1 sulfur (S)
In this case the equation is balanced because you have the same amount of all the elements on each side of the reaction. And <u><em>the 2 in front of 2Ag indicates that,since silver is a reagent, two atoms of silver are needed to complete the reaction. (option C).</em></u>
The Henderson-Hasselbalch equation can be used to determine the pH of the buffer from the pKa value. The pH of the buffer will be 4.75.
<h3>What is the Henderson-Hasselbalch equation?</h3>
Henderson-Hasselbalch equation is used to determine the value of pH of the buffer with the help of the acid disassociation constant.
Given,
Acid disassociation constant (ka) = 1. 8 10⁻⁵
Concentration of NaOH = 2.0 M
Concentration of CH₃COOH = 2.0 M
pKa value is calculated as,
pKa = -log Ka
pKa = - log (1. 8 x 10⁻⁵)
Substituting the value of pKa in the Henderson-Hasselbalch equation as
pH = - log (1. 8 x 10⁻⁵) + log [2.0] ÷ [2.0]
pH = - log (1. 8 x 10⁻⁵) + log [1]
= 4.745 + 0
= 4.75
Therefore, 4.75 is the pH of the buffer.
Learn more about the Henderson-Hasselbalch equation here:
brainly.com/question/27751586
#SPJ4
"The uncertainty<span> in </span>velocity<span> is Δv=1.05⋅105m/s . According to the Heisenberg </span>Uncertainty<span> Principle, you cannot measure simultaneously with great precision both the momentum and the position of a particle. m - the mass of an electron - 9.10938⋅10−31kg."
-socratic.com</span>
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.
The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.