Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.
Assuming that the box is moving when it is being pulled, Work is done on the box.
So work is the Force times the distance
W=Fd
But what is work actually ? When something moves due to force over some change in distance, it have energy.
But where does this energy come from ? Does it magically appear ? The energy comes from the applied force onto the box.
So the energy have been transferred. And it’s like that throughout the universe
Now to save time, I’ll just tell you the answer: kinetic energy
:)
Answer: The density of this piece of jewelry is 
Explanation:
To calculate the density, we use the equation:

Mass of piece of jewellery = 130.8 g
Density of piece of jewellery = ?
Volume of piece of jewellery =( 62.4-47.7 ) ml = 14.7 ml =

Putting values in above equation, we get:

Thus density of this piece of jewelry is 
Answer:
a. 120 W
b. 28.8 N
Explanation:
To a good approximate, the only external force that does work on a cyclist moving on level ground is the force of air resistance. Suppose a cyclist is traveling at 15 km/h on level ground. Assume he is using 480 W of metabolic power.
a. Estimate the amount of power he uses for forward motion.
b. How much force must he exert to overcome the force of air resistance?
(a)
He is 25% efficient, therefore the cyclist will be expending 25% of his power to drive the bicycle forward
Power = efficiency X metabolic power
= 0.25 X 480
= 120 W
(b)
power if force times the velocity
P = Fv
convert 15 km/h to m/s
v = 15 kmph = 4.166 m/s
F = P/v
= 120/4.166
= 28.8 N
definition of terms
power is the rate at which work is done
force is that which changes a body's state of rest or uniform motion in a straight line
velocity is the change in displacement per unit time.
The convection currents in the mantle caused the crust on top to break apart & go different directions.