Answer: 1.176×10^-3 s
Explanation: The time constant formulae for an RC circuit is given below as
t =RC
Where t = time constant , R = magnitude of resistance = 21 ohms , C = capacitance of capacitor = 56 uf = 56×10^-6 F
t = 56×10^-6 × 21
t = 1176×10^-6
t = 1.176×10^-3 s
Answer: Symbol is I and unit A
Explanation: A represents Amperes
HOPE THIS HELPS!!!!!!!!
Answer:
a.) 1567.2 m/s
b.) 149.4 m/s
Explanation:
Given that a 26 kg body is moving through space in the positive direction of an x axis with a speed of 350 m/s when, due to an internal explosion, it breaks into three parts. One part, with a mass of 7.8 kg, moves away from the point of explosion with a speed of 180 m/s in the positive y direction. A second part, with a mass of 8.8 kg, moves in the negative x direction with a speed of 640 m/s.
The x-component of the third part can be calculated by assuming that it moves in a positive x axis.
The third mass = 26 - ( 7.8 + 8.8)
The third mass = 26 - 16.6
The third mass = 9.4kg
since momentum is conserved, the momentum before explosion will be equal to sum of the momentum after explosion
26 x 350 = -8.8 x 640 + 9.4V
9100 = -5632 + 9.4V
9.4V = 9100 + 5632
9.4V = 14732
V = 14732/9.4
V = 1567.2 m/s
(b) y-component of the velocity of the third part will be
7.8 x 180 = 9.4 V
1404 = 9.4V
V = 1404/9.4
V = 149.4 m/s
<span>Heat from the Sun is transferred to the sand without direct contact. This heat is then transferred to your feet by direct contact.</span>
Answer:
Explanation:
We shall apply law of conservation of momentum .
Momentum before collision = momentum after collision .
Momentum before collision = 400 kg m/s
Momentum after collision = 5 x v + 11 x 15
where v is velocity of A after the collision .
5 x v + 11 x 15 = 400
5 v = 400 - 165
5v = 235
v = 47 m /s .