The first step to answering this item is to convert the given temperatures in °F to °C through the equation,
°C = (°F - 32)(5/9)
initial temperature: 72°F
°C = (72 - 32)(5/9) = 22.22°C
final temperature: 145°F
°C = (145 - 32)(5/9) = 62.78°C
Substituting to the equation,
H = mcpdT
H = (43 g)(0.903 J/g°C)(62.78 - 22.22)
H = 1574.82 J
<em>Answer: 1574.82 J</em>
Particles in a gas have more energy than particles in a liquid. Because in gaseous state particles are free to move around due to which kinetic energy of molecule or gas increases and hence overall energy increases
The reactant is Mercury (II) Oxide while the products are Mercury and Oxygen separately.
This is because the reactants are typically always on the left side of the yields symbol. In this decomposition reaction, it would still be the same as at the end of the reaction, there were to products produced: Mercury and Oxygen.
Products tend to always be on the right side of the yields symbol, they're what comes out of a reaction no matter what type.
Hope this helps!
Answer:
11·699
Explanation:
Given the concentration of hydroxide ion in the solution is 5 ×
M
Assuming the temperature at which it is asked to find the pH of the solution be 298 K
<h3>At 298 K the dissociation constant of water is

</h3><h3>∴ pH + pOH = 14 at 298 K</h3><h3>pOH of the solution = -log( concentration of hydroxide ion )</h3>
∴ pOH of the given solution = - log(5 ×
= -0·699 + 3 = 2·301
pH of the given solution = 14 - 2·301 = 11·699
∴ pH of the solution = 11·699