Answer:
Mass = 0.697 g
Explanation:
Given data:
Volume of hydrogen = 1.36 L
Mass of ammonia produced = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
First of all we will calculate the number of moles of hydrogen:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
1atm ×1.36 L = n × 0.0821 atm.L/mol.K × 273.15 K
1.36 atm.L = n × 22.43 atm.L/mol
n = 1.36 atm.L / 22.43 atm.L/mol
n = 0.061 mol
Now we will compare the moles of hydrogen and ammonia:
H₂ : NH₃
3 : 2
0.061 : 2/3×0.061 = 0.041
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.041 mol × 17 g/mol
Mass = 0.697 g
The reaction, Fe2O3 + 3CO------> 2Fe + 3CO2 is an oxidation-reduction reaction.
An oxidation-reduction reaction is a reaction in which there is a change in oxidation number from left to right in the reaction. This is because, a specie is oxidized and another specie is reduced.
In the reaction; Fe2O3 + 3CO------> 2Fe + 3CO2, we can see that the oxidation number of iron decreased from +3 on the left hand side to zero on the right hand side. The oxidation number of carbon was increased from + 2 to +4.
Learn more: brainly.com/question/10079361
Answer:
Oxygen
Explanation:
Water's formula is H20. Which is two hydrogen and one oxygen.
answer is A
The kinetic theory is used to explain the behaviour of gases.
One of the assumptions states that "a gas is composed of a large number of identical molecules moving at different speeds".