Answer:
94.13 ft/s
Explanation:
<u>Given:</u>
= time interval in which the rock hits the opponent = 10 s - 5 s = 5 s
= distance to be moved by the rock long the horizontal = 98 yards
= displacement to be moved by the rock during the time of flight along the vertical = 0 yard
<u>Assume:</u>
= magnitude of initial velocity of the rock
= angle of the initial velocity with the horizontal.
For the motion of the rock along the vertical during the time of flight, the rock has a constant acceleration in the vertically downward direction.

Now the rock has zero acceleration along the horizontal. This means it has a constant velocity along the horizontal during the time of flight.

On dividing equation (1) by (2), we have

Now, putting this value in equation (2), we have

Hence, the initial velocity of the rock must a magnitude of 94.13 ft/s to hit the opponent exactly at 98 yards.
Answer: The taxi is moving with reference to A) Monument Circle. For each leg of the trip, the taxi's A) Average speed stays the same, but it's B) Average velocity changes.
Explanation: Brainliest Please!!!!
Answer:
The balloon will continue to expand and eventually burst.
Explanation:
Simply, the reason for this is because the density of the atmosphere decreases gradually as you increase in altitude closer to space. This means that the air on the outside of the balloon can't provide enough pressure over the surface of the balloon in order to counteract the gas on the inside of the balloon from expanding.
D. gravitational force. is your answer hope this helps