Answer:
Scenario 1 is the correct answer.
Explanation:
The sound of the drumstick hitting the metal bar will get to me in a shorter amount of time in Scenario 1 . The sound wave will travel faster in the metal bar than through the air because the speed of sound waves in solid is faster than it is in gases.
hi <3
i believe the answer would be D, as when the temperature increases the particles have more energy and can overcome the activation energy more rapidly.
hope this helps :)
Answer:
1190 N
Explanation:
Force: This can be defined as the product of mass and velocity. The unit of force is Newton(N).
From the question,
F = ma................. Equation 1
Where F = average force, m = mass, a = acceleration.
But,
a = (v-u)/t................ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t.............. Equation 3
Given: m = 70 kg, v = 1.7 m/s, u = 0 m/s (from rest), t = 0.1 s.
Substitute into equation 3
F = 70(1.7-0)/0.1
F = 1190 N.
Solution :
Given data :
Mass of the merry-go-round, m= 1640 kg
Radius of the merry-go-round, r = 7.50 m
Angular speed,
rev/sec
rad/sec
= 5.89 rad/sec
Therefore, force required,

= 427126.9 N
Thus, the net work done for the acceleration is given by :
W = F x r
= 427126.9 x 7.5
= 3,203,451.75 J
Acceleration = (change in speed) / (time for the change)
change in speed = (ending speed) - (starting speed)
change in speed = (10 m/s) - (2 m/s) = 8 m/s
Acceleration = (8 m/s) / (4 sec)
Acceleration = (8/4) (m/s²)
<em>Acceleration = 2 m/s²</em>