Answer:
h f = W + KE
Input energy equals work function plus KE of emitted electron
W = 6.63E-34 * 2.5E15 - 6.3 * 1.6E-19
W = 6.63 * 2.5 * 10^-19 - 10.1 * E-19 ev (1ev = 1.6E-19 J)
W = (16.6 - 10.1)E-19 = 6.5E-19 J
h f = 6.5E-19 J for electrons to be emitted with zero KE
f = 6.5E-19 / 6.63E-34 = .98E-15 / sec = 9.8E-14 / sec (threshold)
I think that the wavelengths of an incoming solar radiation are shorter than the wavelengths of reradiated heat. This is because the incoming solar radiation to the surface of the earth is in the utraviolet (short) to near infrared (long) wavelength bands. After absorption has taken place, surfaces reradiate heat energy back to the atmosphere at long wavelength infrared.
I honestly don't see anything above. But 'H' on a weather map usually shows the center of a high-pressure system.
Answer:
12.14 cm
Explanation:
mass, m = 15.5 kg
frequency, f = 9.73 Hz
maximum amplitude, A = 14.6 cm
t = 1.25 s
The equation of the simple harmonic motion
y = A Sin ωt
y = A Sin (2 x π x f x t)
put, t = 1.25 s, A = 14.6 cm, f = 9.73 Hz
y = 14.6 Sin ( 2 x 3.14 x 9.73 x 1.25)
y = 14.6 Sin 76.38
y = 12.14 cm
Thus, the displacement of the particle from the equilibrium position is 12.14 cm.