<span>The repelling of the support magnet decreases friction. is the answer you're looking for . :)
hope i helped - beanz</span>
Answer:
a) v = 1.075*10^7 m/s
b) FB = 7.57*10^-12 N
c) r = 10.1 cm
Explanation:
(a) To find the speed of the alpha particle you use the following formula for the kinetic energy:
(1)
q: charge of the particle = 2e = 2(1.6*10^-19 C) = 3.2*10^-19 C
V: potential difference = 1.2*10^6 V
You replace the values of the parameters in the equation (1):

The kinetic energy of the particle is also:
(2)
m: mass of the particle = 6.64*10^⁻27 kg
You solve the last equation for v:

the sped of the alpha particle is 1.075*10^6 m/s
b) The magnetic force on the particle is given by:

B: magnitude of the magnetic field = 2.2 T
The direction of the motion of the particle is perpendicular to the direction of the magnetic field. Then sinθ = 1

the force exerted by the magnetic field on the particle is 7.57*10^-12 N
c) The particle describes a circumference with a radius given by:

the radius of the trajectory of the electron is 10.1 cm
Answer:
v = 12.86 km/h
v = 3.6 m/s
Explanation:
Given,
The distance, d = 13.5 km
The time, t = 21/20 h
= 1.05 h
The velocity of a body is defined as the distance traveled by the time taken.
v = d / t
= 13.5 km / 1.05 h
= 12.86 km/h
The conversion of km/h to m/s
1 km/h = 0.28 m/s
12.86 km/h = 12.86 x 0.28 m/s
= 3.6 m/s
Hence, the velocity in m/s is, v = 3.6 m/s
Answer:
Electrons move through the wires in the opposite direction.
Explanation:
The direction of an electric current is by convention the direction in which a positive charge would move. Thus, the current in the external circuit is directed away from the positive terminal and toward the negative terminal of the battery.
Answer:
C: in between infrared and ultraviolet light
Explanation:
the colors are
V - violet
I - indigo
B - blue
G - green
Y - yellow
O - orange
R - red