Mass, m=22 kg
It is given that Force, F = 88N
Acceleration, a=4 m/s 2
Answer:
Power, P = 600 watts
Explanation:
It is given that,
Mass of sprinter, m = 54 kg
Speed, v = 10 m/s
Time taken, t = 3 s
We need to find the average power generated. The work done divided by time taken is called power generated by the sprinter i.e.

Work done is equal to the change in kinetic energy of the sprinter.


P = 900 watts
So, the average power generated by the sprinter is 900 watts. Hence, this is the required solution.
The correct answer is:

Let's see why.
1 amu corresponds to the mass of the proton, which is:

if we convert this into energy, using Einstein equivalence between mass and energy, we find:

Now we can convert it into electronvolts:

So, 1 amu = 934 MeV. Therefore, 3 amu corresponds to 3 times this value:
Answer:
Explanation:
fringe separation or fringe width is directly proportional to wavelength .
Δ₁ / Δ₂ = wave length of first laser / wavelength of second laser
Δ₁ is fringe separation in first case and Δ₂ is fringe separation in second case.
putting the given values
632.8 / wavelength of second laser = 4.5 / 4.64
wavelength of second laser = 632.8 x (4.64 / 4.5)
= 652.48 nm
652 nm