Magnesium(?)
<span>2 HCl + Mg ? MgCl2 + H2</span>
Answer:
B. CO₂ and H₂O.
Explanation:
When any organic substance undergoes complete combustion, it produces carbon dioxide (CO₂) and water (H₂O).
In the case of methane, the balanced reaction is:
With the above information in mind the correct answer is option B. CO₂ and H₂O.
When the combustion is incomplete, carbon monoxide (CO) is produced as well.
Answer:
7.462
Explanation:
Well, every time that the tempurature is increased, the atmspheric pressure is increased by 0.574%. This would then mean that you would have 0.574 times
13. That would then equal 7.462. I hope this helps.
Answer:
-125 kJ
Explanation:
You calculate the energy required to break all the bonds in the reactants. Then you subtract the energy to break all the bonds in the products.
H₂C=CH₂ + H₂ ⟶ H₃C-CH₃
Bonds: 4C-H + 1C=C 1H-H 6C-H + 1C-C
D/kJ·mol⁻¹: 413 612 436 413 347
The formula relating ΔHrxn and bond dissociation energies (D) is
ΔHrxn = Σ(Dreactants) – Σ(Dproducts)
(Note: This is an exception to the rule. All other thermochemical reactions are “products – reactants”. With bond energies, it’s “reactants – products”. The reason comes from the way we define bond energies.)
<em>For the reactant</em>s:
Σ(Dreactants) = 4 × 413 + 1 × 612 + 1 × 436 = 2700 kJ
<em>For the products:</em>
Σ(Dproducts) = 6 × 413 + 1 × 347 = 2825 kJ
<em>For the system</em>
:
ΔHrxn = 2700 - 2825 = -125 kJ