Answer:
pump that is the answer hope its right
Answer : The mass of
needed are, 1.515 grams.
Explanation :
First we have to calculate the mole of
.

Now we have to calculate the moles of
.
The balanced chemical reaction will be,
produced from 1 mole of 
So, 0.005 mole of
produced from 0.005 mole of 
Now we have to calculate the mass of 


Therefore, the mass of
needed are, 1.515 grams.
"CH3COOH + H2O CH3COO- + H3O+" is the equation among the choices given in the question <span>represents the reaction of acetic (ethanoic) acid with water. The correct option among all the options that are given in the question is the second option or option "B". I hope that the answer has helped you.</span>
Answer:
ΔHr = -103,4 kcal/mol
Explanation:
<u>Using:</u>
<u>AH° (kcal/mol)
</u>
<u>Metano (CH)
</u>
<u>-17,9
</u>
<u>Cloro (CI)
</u>
<u>tetraclorometano (CCI)
</u>
<u>- 33,3
</u>
<u>Acido cloridrico (HCI)
</u>
<u>-22</u>
It is possible to obtain the ΔH of a reaction from ΔH's of formation for each compound, thus:
ΔHr = (ΔH products - ΔH reactants)
For the reaction:
CH₄(g) + Cl₂(g) → CCl₄(g) + HCl(g)
The balanced reaction is:
CH₄(g) + 4Cl₂(g) → CCl₄(g) + 4HCl(g)
The ΔH's of formation for these compounds are:
ΔH CH₄(g): -17,9 kcal/mol
ΔH Cl₂(g): 0 kcal/mol
ΔH CCl₄(g): -33,3 kcal/mol
ΔH HCl(g): -22 kcal/mol
The ΔHr is:
-33,3 kcal/mol × 1 mol + -22 kcal/mol× 4 mol - (-17,9 kcal/mol × 1 mol + 0kcal/mol × 4mol)
<em>ΔHr = -103,4 kcal/mol</em>
<em></em>
I hope it helps!