Answer:
45
Step-by-step explanation:
The order in which the items are chosen is not important. So we use the combinations formula to solve this question.
Combinations formula:
is the number of different combinations of x objects from a set of n elements, given by the following formula.
![C_{n,x} = \frac{n!}{x!(n-x)!}](https://tex.z-dn.net/?f=C_%7Bn%2Cx%7D%20%3D%20%5Cfrac%7Bn%21%7D%7Bx%21%28n-x%29%21%7D)
How many possible subsets of 2 items can be chosen from this lot?
Combinations of 2 from a set of 10. So
![C_{10,2} = \frac{10!}{2!(10-2)!} = 45](https://tex.z-dn.net/?f=C_%7B10%2C2%7D%20%3D%20%5Cfrac%7B10%21%7D%7B2%21%2810-2%29%21%7D%20%3D%2045)
Answer:
You chose the right one
Step-by-step explanation:
i hope this helps :)
Answer:
3
Step-by-step explanation:
Select an ordered pair: (2, 7)
Select another ordered pair: (6, 19)
slope = (difference in y)/(difference in x)
slope = (19 - 7)(6 - 2)
slope = 12/4
slope = 3
X5jhahaj661516 ıyqyququuquwuwuıwı
Answer:
I got 2 as an answer
Step-by-step explanation:
![( {3x}^{4} ) - 5 = 43 \\ ( {3x}^{4} ) = 43 + 5 \\ ( {3x}^{4} ) = 48 \\ \frac{ {3x}^{4} }{3} = \frac{48}{3}](https://tex.z-dn.net/?f=%28%20%7B3x%7D%5E%7B4%7D%20%29%20-%205%20%3D%2043%20%5C%5C%20%28%20%7B3x%7D%5E%7B4%7D%20%29%20%3D%2043%20%2B%205%20%5C%5C%20%28%20%7B3x%7D%5E%7B4%7D%20%29%20%3D%2048%20%5C%5C%20%20%5Cfrac%7B%20%7B3x%7D%5E%7B4%7D%20%7D%7B3%7D%20%20%3D%20%20%5Cfrac%7B48%7D%7B3%7D%20)
![{x}^{4} = 16 \\ \sqrt[4]{ {x}^{4} } = \sqrt[4]{16} \\ x = 2](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B4%7D%20%20%3D%2016%20%5C%5C%20%20%5Csqrt%5B4%5D%7B%20%7Bx%7D%5E%7B4%7D%20%7D%20%20%3D%20%20%5Csqrt%5B4%5D%7B16%7D%20%20%5C%5C%20x%20%3D%202)