Given two points (x₁,y₁) and (x₂,y₂), the midpoint of the segment will be:
( (x₁+x₂) / 2 , (y₁+y₂)/2 ).
In this case:
J(-3,18)
T(7,-10)
The midpoint will be:
( (-3+7)/2 , (18-10)/2 )=(4/2 , 8/2)=(2, 4).
Answer: the midpoint of segment JT is (2,4)
Answer:
x = 14.4
Step-by-step explanation:
x is sin(angle 24/30)×24
how do we get the angle at 24/30 ?
by using the extended Pythagoras for baselines opposite other than 90 degrees.
c² = a² + b² - 2ab×cos(angle opposite of c)
in our example the angle 24/30 is opposite of the side 18.
so,
18² = 24² + 30² - 2×24×30×cos(angle 24/30)
324 = 576 + 900 - 1440×cos(angle 24/30)
324 = 1476 - 1440×cos(angle 24/30)
1440×cos(angle 24/30) = 1152
cos(angle 24/30) = 1152/1440 = 576/720 = 288/360 = 144/180 = 72/90 = 36/45 = 12/15 = 4/5
angle 24/30 = 36.9 degrees
x = sin(36.9) × 24 = 14.4
1 clipe..............7/8
x.......................56
7x/8 = 56
7x = 56*8
x = 56*8/7
x = 8*8
x = 64 clipes
1 clipe = 0,03
64 clipes = 0,03*64
64 clipes = 1,92
Answer:
a=formula : Sum of all side
= 3+5+3
=11 ans
Step-by-step explanation:
formula is sum of all side
so add 3+5+3 ans =11
this is simple method