True, the water would eventually move from solid back to liquid form because of the heat.<span />
Answer:
The surface gravity g of the planet is 1/4 of the surface gravity on earth.
Explanation:
Surface gravity is given by the following formula:

So the gravity of both the earth and the planet is written in terms of their own radius, so we get:


The problem tells us the radius of the planet is twice that of the radius on earth, so:

If we substituted that into the gravity of the planet equation we would end up with the following formula:

Which yields:

So we can now compare the two gravities:

When simplifying the ratio we end up with:

So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.
Answer:

Explanation:
As we know that tension force in the string will be equal to the centripetal force on the string
so we will have

now we have

now we have


now when string length is 0.896 m and its speed is 71.5 m/s then we will have



Answer:

Explanation:
Given that:
The air resistance and friction = 700 N
The gravity caused force = 716 × 9.8 = 7016.8
Total force = (7016.8 + 700) N
Total force = 7716.8 N
∴




<span>In an internal combustion engine, heat flow into a gas causes it to expand.
The application of direct force to specific parts of the engine will produce </span>expansion of the high-temperature<span> and high-</span>pressure<span> gases. Which will transform the chemical energy from the fuel (such as gasoline or oi) into mechanical energy.</span>