1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
2 years ago
5

Calculate the amount of heat needed to melt 35.0 g of ice at 0 ºC.Express your answer in kilojoules

Physics
2 answers:
PolarNik [594]2 years ago
6 0
The amount of heat will be equal to Lm.

Where L is the latent heat of fusion and m is mass of the ice.

Latent heat of ice = 80cal/g.

So the amount of heat required here will be 35× 80cal

= 2,800 cal.
Strike441 [17]2 years ago
5 0
That would be 2,800 calories
You might be interested in
James Cameron piloted a submersible craft to the bottom of the Challenger Deep, the deepest point on the ocean's floor, 11,000 m
Over [174]

Answer:

4.1\cdot 10^8 N

Explanation:

First of all, we need to find the pressure exerted on the sphere, which is given by:

p=p_0 + \rho g h

where

p_0 =1.01\cdot 10^5 Pa is the atmospheric pressure

\rho = 1000 kg/m^3 is the water density

g=9.8 m/s^2 is the gravitational acceleration

h=11,000 m is the depth

Substituting,

p=1.01\cdot 10^5 Pa + (1000 kg/m^3)(9.8 m/s^2)(11,000 m)=1.08\cdot 10^8 Pa

The radius of the sphere is r = d/2= 1.1 m/2= 0.55 m

So the total area of the sphere is

A=4 \pi r^2 = 4 \pi (0.55 m)^2=3.8 m^2

And so, the inward force exerted on it is

F=pA=(1.08\cdot 10^8 Pa)(3.8 m^2)=4.1\cdot 10^8 N

8 0
2 years ago
Read 2 more answers
Two stationary positive point charges, charge 1 of magnitude 3.90 nC and charge 2 of magnitude 1.80 nC, are separated by a dista
soldi70 [24.7K]

Answer:

v = 7793150 m/s

Explanation:

First, we are going to calculate the electrical potential in the point middle between the two charges

Remember that the electrical potential can be calculated as:

v = \frac{kQ}{r}

                 Where     k = 8.9874 x 10^{9} \frac{Nm^{2} }{C^{2} }

and it is satisfy the superposition principle, thus

v = \frac{8.9874x10^{9}(3.90x10^{-9} ) }{0.23} +  \frac{8.9874x10^{9}(1.80x10^{-9} ) }{0.23}

v = 222.73v

The electrical potential at 10 cm from charge 1 is:

v = \frac{8.9874x10^{9}(3.90x10^{-9} ) }{0.1} +  \frac{8.9874x10^{9}(1.80x10^{-9} ) }{0.36}

v = 395.44 v

Since the work - energy theorem, we have:

q\Delta v = \frac{mv^{2} }{2}

                     where q is the electron's charge and m is the electron's mass

Therefore:

v = \sqrt{\frac{2q\Delta v}{m} }

v = 7793150 m/s

6 0
3 years ago
When you are noting the results of your decision, you will ?
Nutka1998 [239]
Judge a source's reliability 
5 0
3 years ago
Read 2 more answers
Derive an expression for the gravitational potential energy of a system consisting of Earth and a brick of mass m placed at Eart
Arlecino [84]

Answer:

The gravitational potential energy of a system is -3/2 (GmE)(m)/RE

Explanation:

Given

mE = Mass of Earth

RE = Radius of Earth

G = Gravitational Constant

Let p = The mass density of the earth is

p = M/(4/3πRE³)

p = 3M/4πRE³

Taking for instance,a very thin spherical shell in the earth;

Let r = radius

dr = thickness

Its volume is given by;

dV = 4πr²dr

Since mass = density* volume;

It's mass would be

dm = p * 4πr²dr

The gravitational potential at the center due would equal;

dV = -Gdm/r

Substitute (p * 4πr²dr) for dm

dV = -G(p * 4πr²dr)/r

dV = -G(p * 4πrdr)

The gravitational potential at the center of the earth would equal;

V = ∫dV

V = ∫ -G(p * 4πrdr) {RE,0}

V = -4πGp∫rdr {RE,0}

V = -4πGp (r²/2) {RE,0}

V = -4πGp{RE²/2)

V = -4Gπ * 3M/4πRE³ * RE²/2

V = -3/2 GmE/RE

The gravitational potential energy of the system of the earth and the brick at the center equals

U = Vm

U = -3/2 GmE/RE * m

U = -3/2 (GmE)(m)/RE

5 0
3 years ago
Laws of rotation of light​
Rudiy27

Answer:

H2CO3

Explanation:

THATS CORRECT DONT WORRY

5 0
3 years ago
Read 2 more answers
Other questions:
  • If an alveolus with an initial volume of 3 ml of air with a total pressure of 810 mmhg decreases in volume to 1.7 ml, what would
    13·2 answers
  • 1. A sprinter races in the 100 meter dash. It takes him 10 second to reach the finish line
    11·1 answer
  • At the same temperature, two wires made of pure copper have different resistances. The same voltage is applied at the ends of ea
    13·1 answer
  • A gaseous refrigerant undergoes compression when 150 j of work is done on it. if the internal energy of the gas increases by 120
    7·1 answer
  • an airplane is traveling at an altitude of 31,360. a box of supplies is driped from the cargo hold how long will it take to reac
    11·1 answer
  • A 90kg man is standing still on frictionless ice. His friend tosses him a 10kg ball, which has a horizontal velocity of 20m/s. A
    5·2 answers
  • There are strong winds on these trees. What makes the wind stronger? Why are they blowing from different directions?
    8·1 answer
  • The fictional rocket ship Adventure is measured to be 65 m long by the ship's captain inside the rocket.When the rocket moves pa
    13·1 answer
  • Can y’all please help
    11·1 answer
  • which part of the microscope will be used first to adjust the focus when starting with the lowest power lens?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!