Answer:
It will take 15.55s for the police car to pass the SUV
Explanation:
We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:
1. 
2. 
Since both cars will travel the same distance x, we can equal both formulas and solve for t:

We simplify the fraction present and rearrange for our formula so that it equals 0:

In the very last step we factored a common factor t. There is two possible solutions to the equation at
and:

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at
(when the SUV passed the police car) and
(when the police car catches up to the SUV)
Is the variable you change, independent, I, something I change.
Answer:
8 Hz
Explanation:
Given that
Standing wave at one end is 24 Hz
Standing wave at the other end is 32 Hz.
Then the frequency of the standing wave mode of a string having a length, l, is usually given as
f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc
Also, another formula is given as
f(m) = m.f(1), where f(1) is the fundamental frequency..
Thus, we could say that
f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)
And as such,
f(1) = 32 - 24
f(1) = 8 Hz
Then, the fundamental frequency needed is 8 Hz
Answer:
Explanation:
a rigid object in uniform rotation about a fixed axis does not satisfy both the condition of equilibrium .
First condition of equilibrium is that net force on the body should be zero.
or F net = 0
A body under uniform rotation is experiencing a centripetal force all the time so F net ≠ 0
So first condition of equilibrium is not satisfied.
Second condition is that , net torque acting on the body must be zero.
In case of a rigid object in uniform rotation , centripetal force is applied towards the centre ie towards the line joining the body under rotation with the axis .
F is along r
torque = r x F
= r F sinθ
θ = 0 degree
torque = 0
Hence 2nd condition is fulfilled.