Answer:
12
N
in the direction opposite to electric field.
Explanation:
Force on a charged particle
q
due to electric field
E
is given by
→
F
=
q
→
E
|
F
|
=
−
0.06
C
×
200
N
C
=
−
12 N
Here negative indicates that force is in the direction opposite to electric field.
Complete Question:
In the same configuration of the previous problem 3, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3.
a) Draw a diagram in a (x,y) plane of the four wires with wire 4 perpendicular to the origin. Indicate the current's directions.
b) Draw a diagram of all magnetic fields produced at the position of wire 3 by the other three currents.
c) Draw a diagram of all magnetic forces produced at the position of wire 3 by the other three currents.
d) What are magnitude and direction of the net magnetic force per meter of wire length on wire 3?
Answer:
force, 1.318 ₓ 10⁻⁴
direction, 18.435°
Explanation:
The attached file gives a breakdown step by step solution to the questions
Answer:
Kindly check the explanation section.
Explanation:
For the design we are asked for in this question/problem there is the need for us to calculate or determine the strength in fracture and that of the yield. Also, we need to calculate for the block shear strength.
From the question, we have that the factored load = 500kips. Also, note that the tension splice must not slip.
Also, the shear force are resisted by friction, that is to say shear resistance = 1.13 × Tb × Ns.
Assuming our db = 3/4 inches, then the slip critical resistance to shear service load = 18ksi(refer to AISC manual for the table).
If db = 7/8 inches, then the shear force resistance for n bolt = 10.2kips, n > 49.6.
The yielding strength = 0.9 × Aj × Fhb= 736 kips > 500
The fracture strength = .75 × Ah × Fhb = 309 kips.
The bearing strength of 7/8 inches bolt at the edge hole and other holes = 46 kips and 102 kips.
These are the characterstics of metal.
hope it helps u........
Answer:
3.26 secs
Explanation:
Diameter of sphere ( D )= 10 mm
T1 = 75°C
P = 1 atm
T∞ = 23°C
T2 = 35°c
Velocity = 10 m/s
<u>Determine how long it will take to cool the sphere to 35°C</u>
<em>Using the properties of copper and air given in the question</em>
Nu = 2 + (Re)^0.8 (Pr)^0.33
hd / k = 2 + ( vd/v )^0.8 (Pr)^0.33
∴ h ≈ 2594.7 W/m^2k
Given that :
(T2 - T∞) / ( T1 - T∞ ) = exp [ ( -hA / pv CP ) t ]
( 35 - 23 ) / ( 75 - 23 ) = exp [ - 2594.7 * 6 * t / 8933 * 387 * 10 * 10^-3 ]
= ln ( 12/52 ) = -1.466337069 = - 0.45032919 * t
∴ t ≈ 3.26 secs ( -1.466337069 / -0.45032919 )