Answer:
(c) 16 m/s²
Explanation:
The position is
.
The velocity is the first time-derivative of <em>r(t).</em>
<em />
<em />
The acceleration is the first time-derivative of the velocity.

Since <em>a(t)</em> does not have the variable <em>t</em>, it is constant. Hence, at any time,

Its magnitude is 16 m/s².
Answer:

Explanation:
We are given that
Diameter,d=

Radius,r=
Density,
Total number of electrons,n=39
Charge on electron =
Total charge=
Distance,s=2mm=
Mass =
Initial velocity,u=0
Final speed,v=4.5 m/s




Force,F=ma





Answer:
374 N
Explanation:
N = normal force acting on the skier
m = mass of the skier = 82.5
From the force diagram, force equation perpendicular to the slope is given as
N = mg Cos18.7
μ = Coefficient of friction = 0.150
frictional force is given as
f = μN
f = μmg Cos18.7
F = force applied by the rope
Force equation parallel to the slope is given as
F - f - mg Sin18.7 = 0
F - μmg Cos18.7 - mg Sin18.7 = 0
F = μmg Cos18.7 + mg Sin18.7
F = (0.150 x 82.5 x 9.8) Cos18.7 + (82.5 x 9.8) Sin18.7
F = 374 N
Rarefraction.
Crest- tallest spot on transverse wave.
Trough- shortest point on transverse wave.
Compression - spot on a compressional wave where the waves are closer together.
Rarefraction - spot on a compressional wave where the waves are farther apart.