Explanation:
1 mol = 22.4 l
5.42 mol = 22.4 × 5.42 = 121.408
in two decimal place it is 121.41
Answer:
- Option d. i<u><em>t is higher than the energy of both reactants and products</em></u>
Explanation:
<em>Activated complex</em>, also known as transition state, is the intermediate structure formed in the course of a chemical reaction.
The activated complex is very unstable and of short life: it is at the peak of the potential chemical diagram, and can transform either into the reactants (backward) or the products (forward).
The activation energy of the reaction is the energy needed to reach the activated complex, then both reactants and products are lower in potential chemical energy than the activated complex, which is what explains why the activated complex can transform into one or another, reactants or products.
Answer:
-3135.47 kJ/mol
Explanation:
Step 1: Write the balanced equation
C₆H₆(l) + 7.5 O₂(g) ⇒ 6 CO₂(g) + 3 H₂O(g)
Step 2: Calculate the standard enthalpy change of the reaction (ΔH°r)
We will use the following expression.
ΔH°r = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpies of formation
p: products
r: reactants
ΔH°r = 6 mol × ΔH°f(CO₂(g)) + 3 mol × ΔH°f(H₂O(g)) - 1 mol × ΔH°f(C₆H₆(l)) - 7.5 mol × ΔH°f(O₂(g))
ΔH°r = 6 mol × (-393.51 kJ/mol) + 3 mol × (-241.82 kJ/mol) - 1 mol × (48.95 kJ/mol) - 7.5 mol × 0 kJ/mol
ΔH°r = -3135.47 kJ
Since this enthalpy change is for 1 mole of C₆H₆(l), we can express it as -3135.47 kJ/mol.