The mass for of aluminum that is produced by the decomposition of 5.0 Kg Al2O3 is 2647 g or 2.647 Kg
calculation
Write the equation for decomposition of Al2O3
Al2O3 = 2Al + 3 O2
find the moles of Al2O3 = mass/molar mass
convert 5 Kg to g = 5 x1000 = 5000 grams
molar mass of Al2O3 = 27 x2 + 16 x3 = 102 g/mol
moles =5000 g/ 102 g/mol = 49.0196 moles
by use of mole ratio between Al2O3 to Al which is 1:2 the moles of Al = 49.0196 x2 =98.0392 moles
mass of Al = moles x molar mass
= 98.0392 moles x 27g/mol = 2647 grams or 2647/1000 = 2.647 Kg
Answer:
D
Explanation:
The answer is D. I'm not sure that it is a solid. I don't think it is a ppte, which is the only way it can be a true solid. It is ionic if the reaction is taking place in water and there is someway to start the reaction. Be that as it may, the internal balace numbers of the chemical produced is the only possible answer. The balanced eq;uatioon is
2Al + 3Br2 ==> 2AlBr3
Answer:
Concentration of OH⁻:
1.0 × 10⁻⁹ M.
Explanation:
The following equilibrium goes on in aqueous solutions:
.
The equilibrium constant for this reaction is called the self-ionization constant of water:
.
Note that water isn't part of this constant.
The value of
at 25 °C is
. How to memorize this value?
- The pH of pure water at 25 °C is 7.
![[\text{H}^{+}] = 10^{-\text{pH}} = 10^{-7}\;\text{mol}\cdot\text{dm}^{-3}](https://tex.z-dn.net/?f=%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-%5Ctext%7BpH%7D%7D%20%3D%2010%5E%7B-7%7D%5C%3B%5Ctext%7Bmol%7D%5Ccdot%5Ctext%7Bdm%7D%5E%7B-3%7D)
- However,
for pure water. - As a result,
at 25 °C.
Back to this question.
is given. 25 °C implies that
. As a result,
.
Answer:
an alloy is a mixture of elements that has metallic properties
Explanation: