T = tension force in the rope in upward direction
m = mass of the box attached at end of rope = 56 kg
W = weight of the box in downward direction due to gravity
a = acceleration of the box in upward direction = 5.10 m/s²
weight of the box is given as
W = mg
inserting the values
W = (56) (9.8)
W = 548.8 N
force equation for the motion of the box is given as
T - W = ma
inserting the values
T - 548.8 = (56) (5.10)
T = 834.4 N
Answer: 20.4 miles
Explanation:
Here we need to use the equation:
Velocity = Distance/Time.
Initially we have that he can travel 30 miles in 2 hours, so the velocity is:
V = 30mi/2h = 15mph
Now, we reduce the velocity by 3 mph, so the new velocity is 15mph - 3 mph = 12mph.
Now we want to know the distance traveled in 1.7 hours with this velocity, this is.
Velocity*Time = Distance
12mi/h*1.7h = 20.4 miles
The car heads east at an average speed of 50 miles per hour from the intersection point towards East. The truck heads east at an average speed of 60 miles per hour from the intersection point towards South.
The distance of car from the intersection point after t hours is
.
The distance of truck from the intersection point after t hours is
.
Since these distances are perpendicular to each other, distance apart d (in miles) at the end of t hours is

Thus the distance apart is 
The period T of a pendulum is given by:

where L is the length of the pendulum while

is the gravitational acceleration.
In the pendulum of the problem, one complete vibration takes exactly 0.200 s, this means its period is

. Using this data, we can solve the previous formula to find L: