The possible magnitude for the force of static friction on the stationary cart is 72.1 N.
The given parameters:
- <em>Applied force on the cart, F = 72.1 N</em>
<em />
Based on Newton's second law of motion, the force applied to object is directly proportional to the product of mass and acceleration of the object.
F = ma
Static frictional force is the force resisting the motion of an object at rest.
where;
is the frictional force
Thus, the possible magnitude for the force of static friction on the stationary cart is 72.1 N.
Learn more about Newton's second law of motion: brainly.com/question/25307325
Answer:
Explanation:
ACCORDING TO NEWTONS SECOND LAW;
F = mass * acceleration
F = m(v-u/t)
m is the mass = 0.15kg
v is the final velocity = 11m/s
u is the initial velocity = 0m/s
t is the time = 0.015
Substitute;
F = 0.15(11-0)/0.015
F = 0.15(11)/0.015
F = 1.65/0.015
F = 110N
Hence the net force is 110N
Answer:
0.00016 kg
Explanation:
Given:
Power = P = 1.2 × 10⁹ Watts
Power = work done / Time
efficiency = 0.30
Input power = 1.2 × 10⁹ / 0.30 = 4 × 10⁹ W
Energy = 4 × 10⁹ x 60 x 60 = 1.44 x 10¹³ joules
E = m c² , where c is the speed of light and m is the mass.
⇒ mass = m = E / c² = (1.44 x 10¹³) / (3 × 10⁸ )²
= 0.00016 kg
Answer:
9.82 × Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ =
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 × Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ =
=
=
= 9.8222 ×
The wavelength of the object is 9.82 × Hz.
<span>electromagnetic.........</span>