Answer:
Explanation:
Given
N0 = 20kg (original substance)
decay constant λ = 0.179/sec
time t = 300s
We are to find N(t)
Using the formula;
n(t) = N0e^-λt
Substitute the given values
N(t) = 20e^-(0.179)(300)
N(t) = 20e^(-53.7)
N(t) = 20(4.7885)
N(t) =143.055
To know how much of the original material that is active, we will find N(t)/N0 = 143.055/20 = 7.152
About 7 times the original material is still radioactive
Hi,
I've found a link that should assist you or answer your question.
http://click.dji.com/ANbvbbP7bwUWtSACp6U_?pm=link&as=0004
Have a nice day!
Producing nuclear energy is far more environmentally friendly than burning fossil fuels. That is the main benefit.
The main risk is radiation. If the nuclear waste is not properly disposed of, it can leak radiation into the environment. Fortunately, this is not an issue since there are ways to deal with it. There is also the risk of a disaster like the Chernobyl incident, however that was mostly due to faulty reactor construction. However, reactors today are built to avoid such issues.
During either one, the sun, moon, and Earth are lined up in the same straight line. The difference is whether the moon or the Earth is the one in the "middle".
Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m