I hope you understand my working:
1) Finding the mol of NH3 to find the mol of (NH4)2SO4 (ammonium sulfate)
2) Mr of (NH4)2SO4
3) Theoretical yield: The actual grams of (NH4)2SO4 produced when reacting 0.514 mol of NH3 to 0.514 mol H2SO4
4) Using formula of (given grams)/(theoretical grams or actual grams) * 100 = 73%
5) Basic algebra
S + O2 → SO2
<span>z / (32.0655 g S/mol) x (1 mol SO2 / 1 mol S) x (64.0638 g SO2/mol) = (1.9979 z) g SO2 </span>
<span>C + O2 → CO2 </span>
<span>(9.0-z) / (12.01078 g C/mol) x (1 mol CO2 / 1 mol C) x (44.00964 g CO2/mol) = (32.9776 - 3.66418 z) g CO2 </span>
<span>Add the two masses of SO2 and CO2 and set them equal to the amount given in the problem: </span>
<span>(1.9979 z) + (32.9776 - 3.66418 z) = 27.9 </span>
<span>Solve for z algebraically: </span>
<span>z = 3.0 g S</span>
The variable is what changes during an experiment. Hopefully this helped! :)
An ionized has consisting of positive ions and free elections in proportion resulting in more or less no overall electric charge