Answer:
234.35 °C
Explanation:
Given data:
Volume of balloon = 125000 mL
Moles of oxygen = 3 mol
Pressure = 1 atm
Temperature = ?
Solution:
Formula:
PV = nRT
P = Pressure
V = volume
n = number of moles
R = ideal gas constant
T = temperature
Volume of balloon = 125000 mL × 1 L /1000 mL
Volume of balloon = 125 L
Now we will put the values:
Ideal gas constant = R = 0.0821 atm.L/mol.K
PV = nRT
T = PV/nR
T = 1 atm × 125 L/ 0.0821 atm.L/mol.K × 3 mol
T= 125 /0.2463 /K
T = 507.5 K
K to °C
507.5 K - 273.15 = 234.35 °C
Protons:
- Have a mass
- Positively charged
- Found inside the nucleus of an atom
Electrons:
- Have a mass. (9.10938188×10−31 kilograms), though this can sometimes be considered negligible due to how small that actually is. Barely factored into atomic mass
- Negatively charged
- Found outside the nucleus in the electron shell
Neutrons:
- Have a mass
- Neutral (no charge)
- Found inside the nucleus of an atom
Atom A:
- 1 proton
- 0 Neutrons
- 1 electron
- Atomic mass of 1
- Atomic number of 1
Atom B:
- 8 Protons
- 10 Neutrons
- 8 electrons
- Atomic mass of 18
- Atomic number of 8
Atomic mass includes the number of protons and neutrons in the nucleus. Atomic number is the number of protons, as this is what defines what type of element the atom is.
Answer:
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Explanation:
The strategy here is to account for the species at equilibrium given that the concentration of [NO]=0.062M at equilibrium is known and the quantities initially present and its stoichiometry.
2NO(g) + 2H2(g) ⇒ N2(g) + 2H2O(g)
i mol 0.10 0.050 0.10
c mol -0.038 -0.038 +0019 +0.038
e mol 0.062 0.012 00.019 0.057
Since the volume of the vessel is 1.0 L, the concentrations in molarity are:
[NO] = 0.062 M
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Answer:
m = 180 g
Explanation:
Given data:
Energy absorbed = 108 J
Mas of gold = ?
Initial temperature = 25°C
Final temperature = 29.7 °C
Specific heat capacity of gold = 0.128 J/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT =29.7 °C - 25°C
ΔT = 4.7 °C
108 J = m ×0.128 J/g.°C ×4.7 °C
108 J = m ×0.60 J/g
m = 108 J/0.60 J/g
m = 180 g
Answer:
When one desires to remove debris from the garden then a soil sifter can be used as a beneficial tool. Based on the needs, it can be of different kinds. A landscaper may sift soil that they use at the time of constructing gardens due to many reasons:
1. The soil becomes aerated, and thus, turn soft and easy to work upon.
2. Sifting the soil makes the work of withdrawing undesired substances from the soil easy.
3. It helps the plants to grow much better as the roots possess the tendency to penetrate more easily through the soil.
4. The soil becomes healthy due to shifting, thus, helps in producing a beautiful and healthy landscape.