Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Answer: No, The energy will remain the same
Explanation: Doubling the mass and leaving the amplitude unchanged won't have any effect on the total energy of the system.
At maximum displacement, E=0.5kA^2
Where E = total energy
K = spring constant
A = Amplitude
From the formula above : Total Energy is independent of mass,. Therefore, total energy won't be affected by Doubling the mass value of the object.
Also when the object is at a displacement 'x' from its equilibrium position.
E = Potential Energy(P.E) + Kinetic Energy(K.E)
P.E = 0.5kx^2
Where x = displacement from equilibrium position
E = Total Energy
K. E= E-0.5kx^2
From the relation above, total energy is independent of its mass and therefore has no effect on the total energy.
Answer:
Δx = 3.99 m
Explanation:
To determine distance, use kinetic energy
will make it short and easy.
KE=1/2mv2 and KE=Δxmgμ
Set the equations equal to each other
1/2mv2=Δxmgμ (Note: The masses cancel
)
1/2v2=Δxgμ Solve for Δx
where g=9.8
Δx=v2/(2gμ) Δx = 25 / (2 * 9.8 * 0.32) Δx = 3.99 m
Please let me know if its correct, if not report it so we can correct it.