Answer: Mass affects the weight of an object with the effects of gravity.
Weight is the measure of the force of gravity on an object's mass, while mass is the measure of how much matter there is in an object.
Answer:
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Explanation:
Given;
Initial length L1 = 1.2m
Initial temperature T1 = 27°C
Final temperature T2 = 0.0°C
Linear expansion coefficient of brass x = 1.9 × 10^-5 /°C
The change i length ∆L;
∆L = L2 - L1
L2 = L1 + ∆L ...........1
∆L = xL1(∆T)
∆L = xL1(T2 - T1) ......2
Substituting the given values into equation 2;
∆L = 1.9 × 10^-5 /°C × 1.2m × (0 - 27)
∆L = 1.9 × 10^-5 /°C × 1.2m × (- 27)
∆L = -6.156 × 10^-4 m
From equation 1;
L2 = L1 + ∆L
Substituting the values;
L2 = 1.2 m + (- 6.156 × 10^-4 m)
L2 = 1.2 m - 6.156 × 10^-4 m
L2 = 1.1993844 m
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Answer:
The diameter is 0.000056 m
Explanation:
Lets explain the relation between the meter and the micrometer
1 Meter is equal to 1000000 (one million) micrometers
1 micrometer = 
The symbol of the meter is m
The symbol of micrometer is μm
A human hair is approximately 56 µm in diameter
We need to express this diameter in meter
To do that we divide this number by 1,000,000 or multiply it by 
→
56 µm = 0.000056 m
→ OR
→
→ 56 µm = 0.000056 m
<em>The diameter is 0.000056 m</em>
The result that should be established is in the form
y = f(x)
where x, the amount of sunlight is the controlled (independent) variable,
y = height (growth) that corresponds to the amount of sunlight. Therefore y depends on x.
Clearly,
x, the amount of sunlight is the independent variable. It can be controlled.
y, the measured amount of growth is the dependent variable.
Answer:
The independent variable is the amount of sunlight.
The dependent variable is the growth.