Answer:
When a solid reaches the temperature of its melting point, it can become a liquid. For water, the temperature needs to be a little over zero degrees Celsius (0oC) for you to melt.
Answer:
–2733.4 KJ
Explanation:
The balanced equation for the reaction is given below:
C₂H₅OH + 3O₂ —> 2CO₂ + 3H₂O
ΔH = −1366.7 kJ
From the balanced equation above,
1 mole of C₂H₅OH reacted to produce enthalpy change (ΔH) of −1366.7 kJ.
Finally, we shall determine the enthalpy change (ΔH) produced by the reaction of 2 moles of C₂H₅OH. This can be obtained as follow:
From the balanced equation above,
1 mole of C₂H₅OH reacted to produce enthalpy change (ΔH) of −1366.7 kJ.
Therefore, 2 moles of C₂H₅OH will react to produce enthalpy change (ΔH) of = 2 × −1366.7 = –2733.4 KJ.
Thus, enthalpy change (ΔH) obtained is –2733.4 KJ
The liquid phase occurs in between
Answer:
Ok:
Explanation:
So, you can use the Henderson-Hasselbalch equation for this:
pH = pKa + log(
) where A- is the conjugate base of the acid. In other words, A- is the deprotonated form and HA is the protonated.
We can solve that
1 = log(
) and so 10 =
or 10HA = A-. For every 1 protonated form of adenosine (HA), there are 10 A-. So, the percent in the protonated form will be 1(1+10) or 1/11 which is close to 9 percent.
Answer:
By electroplating
Explanation:
The metal which requires to be protected from rust is connected to the anode while a lower metal in the series is connected to the cathode, the a complete circuit is made and current is passed through the circuit there by resulting to the coating of the metal at the anode.