1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
2 years ago
5

If you deposit today 11,613 in an account earning 8% compound interest, for how long should you invest the money in order to ear

n 15,131.76 (profit)?
Engineering
1 answer:
Elanso [62]2 years ago
3 0
Y = a (b)^t/p

y is total money

a is original amount

b is growth / decay factor

t is time

p is the frequency of every growth or decay

15131.76 = 11613 x 1.08^x

15131.76 / 11613 = 1.08^x

1.303… = 1.08^x

log1.303…. = xlog1.08

x = 3.43902165741 years
You might be interested in
Always refill your gas tank well before
Scorpion4ik [409]
I believe it’s c because you don’t want your gas to run real low, so I think it’s best to do it when your fuel.
8 0
3 years ago
Your local hospital is considering the following solution options to address the issues of congestion and equipment failures at
kiruha [24]
Jsjhjrhwjdbwjwjrueiworuuwud
4 0
2 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
DRIVERS ED
forsale [732]

Answer:

b

Explanation:

only if there signal is turned on

8 0
3 years ago
Read 2 more answers
A rigid tank whose volume is 2 m3, initially containing air at 1 bar, 295 K, is connected by a valve to a large vessel holding a
bazaltina [42]

Answer:

Q_{cv}=-339.347kJ

Explanation:

First we calculate the mass of the aire inside the rigid tank in the initial and end moments.

P_iV_i=m_iRT_i (i could be 1 for initial and 2 for the end)

State1

1bar*|\frac{100kPa}{1}|*2=m_1*0.287*295

m_1=232kg

State2

8bar*|\frac{100kPa}{1bar}|*2=m_2*0.287*350

m_2=11.946

So, the total mass of the aire entered is

m_v=m_2-m_1\\m_v=11.946-2.362\\m_v=9.584kg

At this point we need to obtain the properties through the tables, so

For Specific Internal energy,

u_1=210.49kJ/kg

For Specific enthalpy

h_1=295.17kJ/kg

For the second state the Specific internal Energy (6bar, 350K)

u_2=250.02kJ/kg

At the end we make a Energy balance, so

U_{cv}(t)-U_{cv}(t)=Q_{cv}-W{cv}+\sum_i m_ih_i - \sum_e m_eh_e

No work done there is here, so clearing the equation for Q

Q_{cv} = m_2u_2-m_1u_1-h_1(m_v)

Q_{cv} = (11.946*250.02)-(2.362*210.49)-(295.17*9.584)

Q_{cv}=-339.347kJ

The sign indicates that the tank transferred heat<em> to</em> the surroundings.

8 0
2 years ago
Other questions:
  • Consider a Mach 4.5 airflow at a pressure of 1.25 atm. We want to slow this flow to a subsonic speed through a system of shock w
    15·1 answer
  • What considerations are included in the Preliminary Floodproofing/Retrofitting Preference Matrix?
    7·1 answer
  • A compound machine contains three simple machines with IMAs of 2, 4 and 5, respectively. What is the overall ideal mechanical ad
    15·1 answer
  • A water agency stated that waterlines cannot have water flowing faster than 8 ft/s. What is the minimum standard pipe diameter t
    12·1 answer
  • A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic
    10·1 answer
  • Wave flow of an incompressible fluid into a solid surface follows a sinusoidal pattern. Flow is two-dimensional with the x-axis
    13·1 answer
  • Air enters a turbine with a stagnation pressure of 900 kPa and a stagnation temperature of 658K, and it is expanded to a stagnat
    9·1 answer
  • What is the basic formula for actual mechanical advantage?
    12·1 answer
  • How much metal can be removed from a cracked drum to restore surface
    9·2 answers
  • A reservoir rock system located between a depth of 2153m and a depth of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!