Centrifugal pump is a hydraulic machine which converts mechanical energy into hydraulic energy by the use of centrifugal force acting on the fluid. These are the most popular and commonly used type of pumps for the transfer of fluids from low level to high level.
Sorry can’t answer without seeing the diagram
Answer:
first step here is to substitute the 3 of your two equations into the second;
3 Ne^(-Q_v/k(1293)) = Ne^(-Q_v/k(1566))
Since 'N' is a constant, we can remove it from both sides.
We also want to combine our two Q_v values, so we can solve for Q_v, so we should put them both on the same side:
3 = e^(-Q_v/k(1293)) / e^(-Q_v/k(1566))
3 = e^(-Q_v/k(1293) + Q_v/k(1566) ) (index laws)
ln (3) = -Q_v/k(1293) + Q_v/k(1566) (log laws)
ln (3) = -0.13Q_v / k(1566) (addition of fractions)
Q_v = ln (3)* k * 1566 / -0.13 (rearranging the equation)
Now, as long as you know Boltzmann's constant it's just a matter of substituting it for k and plugging everything into a calculator.